
Chapter 3 Notes: Electric Potential Energy 
 

How is electric potential energy related to mechanical potential energy? 
  
REVIEW OF CONCEPTS IN MECHANICS: As we begin to examine the potential energy of charged particles, 
we will make use of several important concepts first brought up in the study of mechanical systems. First we start 
with definitions. 

  Definitions:  
1. Kinetic Energy (KE) is the energy associated with the motion of an object;  
2. Potential Energy (PE) is the energy associated with the position of an object; 
3. Total Energy (TE) of an object is the sum of its kinetic and potential energies; 
4. Work (W) is a measure of the energy added to an object through the action of a force; 
5. A Conservative Force is a force whose action does not alter an object’s total energy; 

Defining Relationships: 
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In the equation for kinetic energy (KE), m is the mass of the object, and v is the speed of the object. In the 
equation for work (W), F is the magnitude of the force which is acting on some object, d is the magnitude of the 
displacement of the object while it is being acted on by that force, and θ is the angle between the direction of the 
force, and the direction of the displacement. (Magnitude of displacement d is equal to the distance the object 
moves, if it moves in a straight line.) This equation for work assumes that the force is constant, and it may not be 
used in situations where the force changes in magnitude or direction while the object is moving. 
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Figure shows a small box being pulled across 
a frictionless surface by a force F, such as 
might be supplied by a handle on a suitcase. 

   
 
 
 
Everything above consists of definitions. The fundamental physical principles themselves can be summarized in 
only two equations: 
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(Here, ∆KE is the change in kinetic energy, which is equal 
similarly, ∆TE = change in total energy, and we have this impor

The “Work-Energy” theorem says that the change in the kin
done on that object. So, for instance, if positive work is done,
KE is actually equal to the net work done on the object, i.e., the

 The Conservation of Energy equation says that any chang
done only by nonconservative forces on that object. This impl
the object, its total energy does not change. 

 The forces we have been concerned with fall into two categ
 

 
 
 
 
 

Conservative Forces: 
1) Gravitational Force 
2) Elastic force of an ideal spring 
3) Electrical Force 
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2.  Conservation of Energy 
         WTE =∆
1.  Work-Energy Theorem 
                   WKE =∆  
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Nonconservative Forces: 
1) friction 
2) push or pull due to direct contact with another object or a

person 



In this Workbook, we will only be concerned with the electrical force, and a push or pull due to direct contact  
with another object or person.  

 
Question #1: If only the electrical force is acting on an object – no friction, nor push or pull by direct contact – 
what will happen to the sum of the object’s kinetic and potential energies: (A) increase, (B) decrease, (C) 
remain the same, or (D) may increase or decrease, depending on the situation. Answer: C. Explain why. 
 
 We can now summarize the two general principles that will guide us in understanding electric potential 
energy: 

1) If a charged particle is being acted on only by electrical forces (no push or pull by direct contact), then the 
total energy of the charged particle must remain constant. This means that 0=∆ , and so 

 Therefore, an increase in PE equals a decrease in KE (and vice-versa): 
TE

PE.0=∆+∆ KEPE .KE∆−=∆  
2) If a charged particle is being acted on by both electrical forces and direct-contact [nonconservative] forces, 

then the change in the total energy of the charged particle is equal to the net work done by the 
nonconservative forces:  ativenonconservWTE =∆

 
We will consider two basic physical situations: (1) a region where the electric field is uniform (same 
magnitude and direction everywhere); (2) a region in the neighborhood of a single, isolated “source” charge. 
Most real situations are more complicated than these, but we can understand most of the basic ideas by looking 
at these two situations. 
 

I. Region where electric field is uniform (i.e., electric field has same magnitude and direction everywhere in 
region). 

Let’s consider what happens to a positive test charge q when we release it from rest in this region. Its 
initial kinetic energy is zero, but as time goes on, the particle speeds up (due to the electrical force acting on it) 
and so it gains kinetic energy. Since only the electrical force is acting on it (we assume), its total energy must be 
constant. Therefore, its potential energy must be decreasing. How much will its potential energy change if it 
travels a distance d? The decrease in potential energy must be equal to the increase in kinetic energy, and – 
according to the Work-Energy theorem – this is equal to the work done on the particle by the electric force. If 
the particle is released from rest, it will travel in the direction of the electric field (since that’s the direction of 
the force acting on it). The magnitude of the force acting on it is equal to qE¸ so we have the following 
relationship: 

qEdFdFdFdWKEPE =====∆=∆− o0coscosθ
What this equation says is this: If a positive charge q travels a distance d in the direction of a uniform 

electric field with magnitude E, then the potential energy of this charge will decrease by an amount equal to 
qEd. (We can see that its potential energy decreases, because if qEd is positive, then ∆PE will be negative: ∆PE 
= –qEd). That means that the final value of the potential energy is less than the initial value, by an amount 
equal to qEd. (If the charge does not travel in a straight line, then the change in potential energy is given by 

,cosθqEdPE −=∆  where d is the magnitude of the charge’s displacement.) 
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 Now, where is the potential energy, PE, equal to zero? The answer is, we can set it equal to zero anywhere 
we want. This is because the quantity that really has meaning is ∆PE – the change in PE – not the absolute 
value of PE itself. However, we usually choose some convenient location at which to set PE = 0. Then, we will 
often speak of the “PE” value of the charge at some point, even though what we really mean is the difference in 
PE values between that point, and the point where we have set PE equal to zero. 
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Question #2: Suppose a charged particle, which was released from rest, loses 3 J of potential energy 
while traveling a distance of 4 m in a uniform electric field. (a) How much potential energy will it lose if 
it travels a distance of 12 m in this same field? (b) How much kinetic energy will it gain if it travels a 
distance of 10 m in this same field? Answers: 9 J; 7.5 J 
 

II. Region in neighborhood of a single, isolated “source” charge Q. 
The situation in this case is more complicated, because the electric field is not uniform in the 

neighborhood of an isolated source charge. The electric field at any point in that neighborhood points away from 
a positive source charge (and toward a negative source charge). Thus, the direction that the field points depends 
on where you are located. Also, the field has larger magnitude near the source charge (remember that the 
magnitude is given by E = k|Q|/r2).  

Now, suppose we have a positive source charge Q fixed in position at the origin, and we place a positive 
test charge q somewhere in the neighborhood, initially at rest, at a distance from the source charge Q. 
What will happen to the test charge when it is allowed to move freely? It will begin to move away from the 
source charge (since it’s repelled), and as it moves, it will speed up. (Since it always experiences a force the 
force will cause it to accelerate, and so its speed continues to increase). Since its kinetic energy must be 
increasing, once again we see that its potential energy must be decreasing (because, again, its total energy must 
remain constant). This tells us that the farther away it gets from the source charge, the smaller will be its 
potential energy.  

initialr

How much will the potential energy change? Again, because TE = constant, we will have: 

WKEPE −=∆−=∆
 
But in this case, we can not use θcosFdW =  because the force is not constant. Using the methods of 

calculus it is possible to find the work done on the charge by the electric force when the charge changes its 
position. This leads to the following result: 
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 From this we see, as we expect, that as the charge q moves away from Q its potential energy decreases. 
(Since  ∆PE will be negative, which means that PE is decreasing.) Does its PE ever get down to 

zero? In a case like this, we usually decide to set the value of PE equal to zero when the test charge is infinitely 
far away from the source charge; this is when the value of r is infinity. (This choice usually makes problems of 
this type easier to solve.) Given this choice, the potential energy PE of a test charge q a distance r from a source 
charge Q will be given by the following simple equation: 

,initialfinal rr >
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Note that for a given source charge Q and a given test charge q, the potential energy of the charge q 
depends only on its position. It does not matter how charge q arrived at that position or what path it followed. 

Now, what if the test charge is negative, i.e., q < 0 (while the source charge Q remains positive)? That 
equation seems to say that the potential energy of a negative test charge would be negative; does that make 
sense? Well, suppose we place a negative test charge at rest in the neighborhood of Q; what will happen? It will 
start to move in toward Q (since it’s attracted); so its kinetic energy increases as r gets smaller. Or, to put it 
another way, its PE increases as r increases. But we have set PE = 0 when r = ∞; how could PE be increasing 
up to a value of zero? Answer: By starting out at some negative value. Therefore, the equation is actually correct 
for q < 0. 

 
 Now, what about for a negative source charge (Q < 0)?  You should be able to devise an argument to show 
that the same equation above works in that case as well. 
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Examples:  
#1. Two parallel metal plates are connected to a battery, which creates a uniform electric field between the plates. 
The electric field points from the left-side plate to the right-side plate. A 2-C charge is held at rest somewhere 
between the plates, and then released. When it strikes the right-side plate, its kinetic energy is 6 J, and its potential 
energy is 0 J. What was its potential energy just before it was released? 

#2. A uniform electric field of magnitude 4 N/C is set up in a region 8 m wide. A 2-C charge is held at rest on a wall 
on one side of the region, and then released. What is its kinetic energy when it strikes the wall on the other side? 

 
#3.  A 3-C charge is fixed at the origin. A 2-C charge is held 3 m from the origin, and then released. Later, a 1-C 
charge is held 2 m from the origin, and it is released. All three charged particles have the same mass. Which of 
these statements is true, in comparing the 2-C and the 1-C charges:  

A. The 2-C charge will eventually attain the fastest speed (i.e., when it is very far from the origin.) 
B. The 1-C charge will eventually attain the fastest speed (i.e., when it is very far from the origin.) 
C. Both the 1-C and the 2-C charges will eventually attain the same speed.  

 
#4. An object with a mass of 2 kg and a net charge of 4 µC is shot from a gun aimed at the origin. The gun is 
located 20 km from the origin; the initial speed of the object is 3 m/s. A particle with a charge of 0.001 C is fixed at 
the origin. How close will the object get to the origin before it slows to a stop and starts back the other way? 
 

Answers and Explanations: 

#1. When it strikes the right side plate, the total energy (TE) of the charge is 6 J (6 J + 0 J). Since its total energy 
does not change, that must have been the original value of its total energy as well. Initially, it was at rest so its 
kinetic energy was zero. Therefore, the initial value of its potential energy must have been 6 J.  
 
#2. The change in the kinetic energy is equal to the work done on the charge. The charge is released from rest, and 
so will travel in the same direction as the electric field. Therefore, we get  

JmCNCqEdFdFdFdW 64)8)(/4)(2(0coscos ====== oθ
This tells us that the change in the kinetic energy was 64 J. Since the initial value of the KE was 0 J, we see that the 
final value of the KE, when the charge strikes the wall, is 64 J. 
 
#3. To figure out which charge eventually attains the fastest speed, we have to remember that the total energy of 
each charge will not vary as it moves, since only electrical forces are acting. For each charge, the initial kinetic 
energy is zero, since they are released from rest. Therefore, all of their energy is initially potential energy. 
Eventually, they will move very far away from the origin due to the repulsive force. In fact, they will eventually 
move so far that their potential energy is very close to zero. (Remember that their potential energy is given by  
PE = kQq/r. When  r is very large, PE is very small.) 

So, when they get very far from the origin, their potential energy is nearly zero and nearly all of their total 
energy will be kinetic energy. Eventually, their kinetic energy will be nearly equal to the amount of potential energy 
that they had at the moment they were released. Since they both have the same mass, whichever has the largest final 
kinetic energy will also have the fastest final speed. 

So, all we have to do is figure out which one has the largest initial potential energy. The initial potential 
energy of the 2-C charge is given by by PE = k(3)(2) ÷ (3) = 2k J. The initial potential energy of the 1-C charge is 
given by PE = k(3)(1) ÷ (2) = 1.5k J. Therefore, the 2-C charge has the larger initial potential energy. So, it will 
eventually have the largest kinetic energy, and therefore the fastest speed. (So answer is “A.”) 
 
#4. The initial total energy equals the final total energy: KE(initial) + PE(initial) = KE(final) + PE(final). We know 
that KE(initial) = ½ mv2 = (0.5)(2)(9) = 9 J, and KE(final) = 0 J. PE(initial) is nearly zero, since PE = kQq/r and 
r(initial) = 2 × 104 m. Then we have TE(initial) = TE(final) ⇒ 9 J + 0 J = 0 J + PE(final), so PE(final) = 9 J. Then 
kQq/r = 9 J, or r = kQq ÷ 9 J = (9 × 109 )(0.001)(4 × 10–6 ) ÷ 9 = 4 m.  
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