Physics 112 Quiz \#5
 September 10, 1999

Name:

$$
\begin{aligned}
& e=1.60 \times 10^{-19} \mathrm{C} \\
& k=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}
\end{aligned}
$$

1. An electric field that is not uniform is present in a room. When a 1 C charge is brought into the room and placed in the center of the room, it feels a force of 10 N toward the north. The 1 C charge is then removed. If a -2 C charge is now brought into the room 3 m away from the center of the room, what is the magnitude and direction of the force on the -2 C charge?
A. 0 N
F. 10N toward the south
B. 10 N toward the north
G. 20 N toward the south
C. 20 N toward the north
H. $1 \times 10^{9} \mathrm{~N}$ toward the south
D. $1 \times 10^{9} \mathrm{~N}$ toward the north
I. $2 \times 10^{9} \mathrm{~N}$ toward the south
E. $2 \times 10^{9} \mathrm{~N}$ toward the north
J. There is not enough information to answer the problem.
2. An electron is located at the point $(x=-1 m, y=0 m)$ and a proton is located at the point $(x=1 m, y=0 m)$. The direction of the net electric field at the point $(x=0 m, y=1 m)$ is:
A. towards positive x
E. towards a different direction than those given in $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D
B. towards positive y
F. There is no electric field at that point.
C. towards negative x
G. There is not enough information to answer the problem.
D. towards negative y
3. A proton is fixed at the origin; there are no other "source" charges present. Which of these is true about the electric field at a point " P " 2 m from the origin?
A. If there is no particle located at point P - if it is just vacuum, i.e., "empty space" - then there is no electric field there.
B. A test charge q and a test charge $2 q$ placed at point P will detect different magnitudes of the electric field at that point.
C. A test charge q and a test charge $2 q$ placed at point P will experience different magnitudes of electrical force at that point.
D. The electric field at point P is a measure of how much area is in the neighborhood of the proton.
E. The electric field at point P will have the same magnitude as the electric field at a point 1 m from the origin.
4. Two protons are located at ($-1 \mathrm{~m}, 0 \mathrm{~m}$) and three electrons are located at $(+1 \mathrm{~m}, 0 \mathrm{~m})$. What is the magnitude and direction of the net electric field at the origin? No partial credit. Your answer must be within 10% of the correct answer to receive credit. Units missing or incorrect: -1 point.
