Physics 112 Quiz \#6
 September 13, 1999

Name:

$$
\begin{aligned}
& e=1.60 \times 10^{-19} \mathrm{C} \\
& k=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}
\end{aligned}
$$

1. Which of these statements about the electric field due to an isolated point charge is not true?
A. The magnitude of the electric field is inversely proportional to the square of the distance from the charge.
B. The electric field due to the charge exists at every point in space (although its magnitude and direction are not uniform).
C. The direction of the field due to this isolated charge - i.e., toward or away from the charge depends on the sign of this charge.
D. Any charged particle - of any sign or magnitude - placed anywhere in the electric field would experience some electrical force.
E. At a certain distance from the charge the electric field completely disappears; a test charge placed beyond this point will not experience an electrical force.
2. An isolated charge is located at $(0 \mathrm{~m}, 0 \mathrm{~m})$. At $(+8 \mathrm{~m}, 0 \mathrm{~m}),|E|=16 \mathrm{~N} / \mathrm{C}$. At $(0 \mathrm{~m},-2 \mathrm{~m}),|E|=$?
A. $1 \mathrm{~N} / \mathrm{C}$
B. $4 \mathrm{~N} / \mathrm{C}$
C. $16 \mathrm{~N} / \mathrm{C}$
D. $64 \mathrm{~N} / \mathrm{C}$
E. $256 \mathrm{~N} / \mathrm{C}$
3. Two parallel metal plates are charged by connecting them to a battery; one plate is charged positive, the other negative. This creates a uniform electric field between the plates. An electron is released from rest somewhere between the plates, and allowed to move. As it moves, the electron's:
A. kinetic energy increases and potential energy increases.
B. kinetic energy increases and potential energy decreases.
C. kinetic energy increases and potential energy remains constant.
D. kinetic energy decreases and potential energy increases.
E. kinetic energy decreases and potential energy decreases.
F. kinetic energy decreases and potential energy remains constant.
4. At a particular point in otherwise empty space, a $6-\mathrm{C}$ charge is placed and it experiences an electrical force of 18 N . If this charge is removed, and instead a $2-\mathrm{C}$ charge is placed at that point, what will be the magnitude of the force that $i t$ will experience?
A. 2 N
B. 3 N
C. 4 N
D. 6 N
E. 8 N
F. 9 N
G. 12 N
H. 16 N
I. $\quad 24 \mathrm{~N}$
J. 36 N
