# Physics 112 <br> Quiz \#14 <br> October 15, 1999 

Name:
IF YOU WANT A QUESTION GRADED OUT OF THREE POINTS (-1 [MINUS ONE] FOR WRONG ANSWER!!) WRITE "3" IN SPACE PROVIDED ON EACH QUESTION.
$e=1.60 \times 10^{-19} C$

1. A proton is located at $(-1 \mathrm{~m}, 0 \mathrm{~m})$ and two protons are located at $(+1 \mathrm{~m}, 0 \mathrm{~m})$. A 1-C charge is located at the origin. What is the magnitude of the net electrical force experienced by the charge at the origin?
A. 0 N
B. $0.36 \times 10^{-9} \mathrm{~N}$
C. $0.72 \times 10^{-9} \mathrm{~N}$
D. $1.08 \times 10^{-9} \mathrm{~N}$
E. $1.44 \times 10^{-9} \mathrm{~N}$
F. $2.88 \times 10^{-9} \mathrm{~N}$
G. $4.32 \times 10^{-9} \mathrm{~N}$
2. A three-ohm resistor and a four-ohm resistor are connected in series to a battery. In a separate circuit, a three-ohm resistor and a four-ohm resistor are connected in parallel to a battery with the same battery voltage as in the first circuit. Which resistor will have the largest amount of current flowing through it?
A. The three-ohm resistor in the series circuit.
B. The four-ohm resistor in the series circuit.
C. The three-ohm resistor and the four-ohm resistor in the series circuit, which have the same amount of current flowing through them.
D. The three-ohm resistor in the parallel circuit.
E. The four-ohm resistor in the parallel circuit.
F. The three-ohm resistor and the four-ohm resistor in the parallel circuit, which have the same amount of current flowing through them.
Grade out of 3? Write " 3 " here: $\qquad$
3. Resistor A has twice the resistance of resistor B. They are connected in parallel to a battery. Then:
A. Resistor A dissipates four times as much power as resistor B.
B. Resistor A dissipates twice as much power as resistor B.
C. Resistor A dissipates the same amount of power as resistor B
D. Resistor A dissipates half as much power as resistor B.
E. Resistor A dissipates one fourth as much power as resistor B.
4. A 10 -ohm and a 5 -ohm resistor are connected in parallel to a battery as shown in the diagram. The power dissipated in the 5-ohm resistor is $P_{5}$. What will happen to $P_{5}$ if the $\mathbf{1 0 - o h m}$ resistor is removed, and another resistor with resistance less than 5 ohms is put in its place? (No other changes are made to the circuit.)

Then $P_{5}$ :
A. will increase.
B. will decrease.
C. will remain equal to 0 W .
D. will not change, but is not equal to 0 W .

E. might increase, decrease, or remain the same, depending on the precise value of the new resistance.

Grade out of 3? Write " 3 " here: $\qquad$

