Physics 112
 Quiz \#19
 November 5, 1999

Name:

IF YOU WANT A QUESTION GRADED OUT OF THREE POINTS (-1 [MINUS ONE] FOR WRONG ANSWER!!) WRITE "3" IN SPACE PROVIDED ON EACH QUESTION.

1. Suppose that a continuous wire runs around the four edges of this page, carrying a clockwise current. Circle all letters corresponding to the directions of an external magnetic field that would not cause a torque to be exerted on this loop.
A. \uparrow
B.
C. \rightarrow
D. $\longleftarrow<$
E.

F.
2. Suppose you lower a large bar magnet on top of the loop described in \#1, with the south pole of the magnet closer to the loop (i.e., long axis [$\mathrm{N}-\mathrm{S}$ axis] of the magnet perpendicular to plane of loop). What should you expect to happen:
A. Loop will be attracted toward the magnet.
B. Loop will be repelled away from the magnet.
C. Loop will be neither attracted nor repelled, but will experience a torque.
D. Loop will experience no attraction, no repulsion, and no torque.

Grade out of 3? Write " 3 " here: \qquad
3. A wire loop is sitting in a magnetic field. The field is pointing perpendicular to the plane of the loop. Which of these fields will cause the largest magnitude of current to flow in the loop?
A. Initial value 10 T , constant
B. Initial value 10 T , increasing at $2 \mathrm{~T} / \mathrm{s}$
C. Initial value 5 T , decreasing at $3 \mathrm{~T} / \mathrm{s}$
D. Initial value 20 T , constant
E. Initial value 40 T , increasing at $1 \mathrm{~T} / \mathrm{s}$

Grade out of 3? Write " 3 " here: \qquad
4. A uniform magnetic field points in the positive z direction; a straight wire carrying a current is sitting in this field. Rank in order the magnitude of the force exerted on this wire for the following five orientations of this wire:
A. along the x axis
B. along the y axis
C. along the z axis
D. in the xy plane, but not parallel to either the x or y axes
E. in the $y z$ plane, but not parallel to either the y or z axes

