Physics 112 Quiz \#5 September 11, 2000 Name:

1. Two negative charges and two positive charges, all of equal magnitude, are placed at the corners of a square as shown. Which choice most closely represents the net electric field at the center of the square that is produced by these charges?

A

B

C

2. A strong and unchanging electric field is present in a certain region of space. In order to measure the strength of this field, you place a particle with very small amount of charge q at some point and measure the force on that particle. If you remove the charge q, and instead you place a charge $2 q$ at that same point, the electric field magnitude (not the force) you now measure at that point will be:
A. the same.
B. twice as large.
C. four times as large.
D. half as large.
E. one quarter as large.
F. Not enough information to be sure.
3. A negative point charge is fixed at the origin. A positive charge q is placed at point P, initially at rest. After it is released and allowed to move freely, it passes through point R. Which of the following is true about the charge q :
A. Its kinetic energy is larger at R than at P, and its potential energy is also larger at R than at P.
B. Its kinetic energy is larger at R than at P, but its potential energy is smaller at R than at P.
C. Its kinetic energy is smaller at R than at P, and its potential energy is also smaller at R than at P.
D. Its kinetic energy is smaller at R than at P, but its potential energy is larger at R than at P.
E. Both its kinetic energy and its potential energy are the same at R as they are at P.
4. At a particular point in otherwise empty space, a 4.6-C charge is placed and it experiences an electrical force of 18.4 N . If this charge is removed, and instead a $6-\mathrm{C}$ charge is placed at that point, what will be the magnitude of the force that it will experience? No partial credit. Your answer must be within 15% of the correct answer to receive credit. Units missing or incorrect: -1 point.

Answer: \qquad

