Physics 112: Answers to Exam \#2

1. I
2. D Current is larger in both parallel branches than it is in the series circuit; therefore, power dissipated by two-ohm in parallel is larger than power dissipated by two-ohm in series (using P $\left.=I^{2} R\right)$, and same is true for the five-ohm resistors. In the parallel circuit, ΔV is the same for both resistors, so more power is dissipated in the two-ohm resistor [using $\left.P=(\Delta V)^{2} / \mathrm{R}\right]$.
3. D $\Delta V_{A B}=\Delta V_{b a t}=$ constant.
4. D $I_{2}=\Delta V_{b a t} / R_{2}=$ constant.
5. A Initial distance between charges is 5 m , final distance is 4 m .
$W=\Delta T E=\Delta P E=P E($ final $)-P E($ initial $)=k Q q / r_{\text {final }}-k Q q / r_{\text {initial }}=k Q q / 4-k Q q / 5=(1 / 20) k Q q$ $=(1 / 4)(k Q q / 5)=(1 / 4)(40 \mathrm{~J})=10 \mathrm{~J}$.
6. A The force is toward the north because the electric field points toward lower potential, and is perpendicular to the equipotential lines. The force is stronger at point B because the field is stronger there, as indicated by the tighter spacing of the equipotential lines.
7. C The current through R_{3} is $3 \mathrm{~A}\left(=\Delta V_{3} / R_{3}\right)$, which is the same as the current throughout the whole segment including point B .
8. $\mathbf{A}=\mathbf{D}=\mathbf{E}>\mathbf{B}=\mathbf{C}$
9. The potential drop across bulbs A, D, and E is the same (equal to the battery voltage), so the current through all three of them will be the same. The potential drop across bulbs B and C are both equal to half the battery voltage, so the current through those bulbs will be smaller than the other three (but equal to each other).
10. A) $I_{R 3}>I_{R 1}>I_{R 2}$ [current splits after going through R_{3}, more than half goes through R_{1}]
B) $\Delta V_{3}>\Delta V_{1}$ because those two resistances are equal, and so potential difference will be proportional to the amount of current through them.
C) $\Delta V_{b a t}=\Delta V_{3}+\Delta V_{1}$ and $\Delta V_{b a t}=\Delta V_{3}+\Delta V_{2}$, according to Kirchoff's loop rule.
11.

12. $\mathrm{PE}=\mathrm{qV}=0 \mathrm{~V}$ at left plate, so gain in PE is one box for a potential change of one volt. Therefore, the charge gains two boxes of PE, and loses two boxes of KE, for each 2-V change in potential as it moves.

