Physics 112 Sample Exam Questions #1

The following situation applies to problems #1 and #2: A -2-C charge is located at (-1 m, 0 m) and two +2-C charges are located at (+2 m, 0 m). An electron is located at the origin.

- 1. What is the magnitude of the net electric *field* experienced by the electron at the origin, produced by the three charges described above?
 - A. 9.0×10^{9} N/C B. 1.8×10^{10} N/C C. 2.7×10^{10} N/C D. 3.6×10^{10} N/C E. 5.4×10^{10} N/C F. 1.44×10^{-9} N/C G. 2.88×10^{-9} N/C H. 4.32×10^{-9} N/C I. 5.76×10^{-9} N/C J. 8.64×10^{-9} N/C
- 2. Suppose the electron in problem #1 were replaced with a proton. Then the net *force* on the proton, compared to the net force on the electron, would be:
 - A. larger in magnitude, but in the same direction
 - B. larger in magnitude, and in the opposite direction
 - C. equal in magnitude, and in the same direction
 - D. equal in magnitude, but in the opposite direction
 - E. smaller in magnitude, but in the same direction
 - F. smaller in magnitude, and in the opposite direction
- 3. A 5-C charge is fixed at the origin. At the point (1 m, -2 m) the x component of the electric field is:
 - A. less than zero, with magnitude equal to the y component.
 - B. equal to zero, with magnitude equal to the y component.
 - C. greater than zero, with magnitude equal to the y component.
 - D. less than zero, with magnitude **not** equal to the y component.
 - E. equal to zero, with magnitude **not** equal to the y component.
 - F. greater than zero, with magnitude **not** equal to the y component.

- 4. A -1-C charge is located on the x axis at x = -2 m, and a +2-C charge is located on the x axis at x = +4 m. Where on the x axis must you put a +6-C charge to ensure that the *net electric field* at the origin has *zero* magnitude?
 - A. x = +4 mB. x = +3 mC. x = +2 mD. x = +1 mE. x = 0 m. F. x = -1 mG. x = -2 mH. x = -3 mI. x = -4 mJ. x = -5 m
- 5. An object with a mass of 2 kg and a net charge of 4 μ C is shot from a gun aimed at the origin. The gun is located 20 km from the origin; the initial speed of the object is 3 m/s. A particle with a charge of 0.001 C is fixed at the origin. How close will the object get to the origin before it slows to a stop and starts back the other way?
 - A. 1 m
 B. 2 m
 C. 3 m
 D. 4 m
 E. 5 m
 F. 6 m
 G. 8 m
 H. 9 m
 I. 12 m
 J. 16 m
- 6. Two positive point charges Q and 3Q are separated by a distance R. [No other charges are present, and there is no external electric field.] If the charge Q experiences a force of magnitude 12 N when the separation is R, what is the magnitude of the force *on the charge 3Q* when the separation is 2R?
 - A. 1 N
 B. 2 N
 C. 3 N
 D. 4 N
 E. 6 N
 F. 8 N
 G. 9 N
 H. 12 N
 I. 18 N
 J. 24 N

- 7. A positive charge sits at the location x = 5.2 m, y = 3 m. What is the direction of the electric field at the origin, measured with respect to the positive-x axis?
 - A. 0°
 B. 30°
 C. 45°
 D. 60°
 E. 90°
 F. 120°
 G. 150°
 H. 210°
 I. 240°
 J. 300°
- 8. You are told to measure the electric field in an empty room where the electric field is known to be uniform throughout. You find that a particle with a 3-C charge, placed 1 m from the center of the room, experiences a force of 18 N in the direction of north. After you leave, taking your particle with you, someone else enters the room and makes force measurements on a particle with a charge of -6 C. If they place their particle at a point two meters from the center of the room, they should report that the electric field in the room is:
 - A. 1.5 N/C pointing north
 - B. 1.5 N/C pointing south
 - C. 3.0 N/C pointing north
 - D. 3.0 N/C pointing south
 - E. 6.0 N/C pointing north
 - F. 6.0 N/C pointing south
 - G. 9.0 N/C pointing north
 - H. 9.0 N/C pointing south
 - I. 12.0 N/C pointing north
 - J. 12.0 N/C pointing south

9. What is the magnitude of the electrical force on an electron that is located 65 centimeters from a proton? No partial credit. Answer must be within 10% of correct answer to get credit. Units missing or incorrect: -1 point.

Answer: _____

10. (show your work for partial credit.) Suppose there is a uniform electric field in a large region including the origin. Somebody comes in, places an electron at the point (-2 m, 0 m), makes some measurements, and then takes it away. Then you come in, place a 2-µC charge at the point (+1m, 0 m), and measure a force of 3N directed "up" acting on your charge. Complete this chart to indicate the magnitude and direction of the force **and** the electric field experienced both by your charge, and by the electron.

	magnitude of force	direction of	magnitude of field	direction o	f
		force		field (up o	r
		(up or down)		down)	
2-µC charge	3 N	up			
electron					