Answers to Sample Exam Questions \#2

1. $|\Delta K E|=|\Delta P E|=|q \Delta V|=(2 \mathrm{e}) \Delta \mathrm{V}$
2. The electric field magnitude is E; a different test charge won't change the electric field at that point.
3. The distance is increased from 0.10 m to 3.33 m , a factor of 33.3 . Therefore, the force has decreased by a factor of $(33.3)^{2}=1100$, so the force is now less than two one-thousands of a newton, or 0.002 N .
4. A positive charge Q is fixed on the y axis at $y=6 \mathrm{~m}$. Another positive charge q is located on the x axis at $\mathrm{x}=8 \mathrm{~m}$; its potential energy there is 60 J . How much energy is required for you to push the charge q over to the origin, starting from the original location?

Initial distance between charges (in meters) is $\left(6^{2}+8^{2}\right)^{1 / 2}=10 \mathrm{~m}$;
$W=\Delta T E=\Delta P E=P E($ final $)-P E($ initial $)=k Q q / r_{\text {final }}-k Q q / r_{\text {initial }}=k Q q / 6-k Q q / 10=(4 / 60) k Q q$ $=(2 / 3)(k Q q / 10)=(2 / 3)(60 \mathrm{~J})=40 \mathrm{~J}$.
5. A positive charge is moving freely (no external forces) in the presence of an electric field. As it moves, which of these could be true: TWO CORRECT ANSWERS - WRITE BOTH; HALF CREDIT FOR EACH ONE.

Its speed increases while it moves toward a region of lower electric potential. Its speed decreases while it moves toward a region of higher electric potential.
6. In the circuit shown, resistor R_{2} is a variable resistor whose resistance may be changed. As the resistance of resistor R_{2} is decreased, what will happen to the power dissipated by resistor R_{1} ?

It remains the same since the current through R_{1} remains constant $\mathrm{I}_{1}=\Delta \mathrm{V}_{\text {bat }} / \mathrm{R}_{1}$ which is unchanged.

7. The electric field vector is shown at one point in this diagram. Draw electric field vectors at points A, B, C, and D in the same diagram. Electric field vectors are perpendicular to equipotential lines; magnitude is greater where equipotential lines are closer; electric field points toward lower potential.

