Workbook Chapter 4 Homework Answers

1. See sheets.
2. See sheets.
3. If a positive test charge (for example) is placed at rest near q_{1} or q_{2} and then allowed to move freely, the test charge will accelerate due to the electrical force. Therefore, its $K E$ will increase and its $P E$ will decrease $(\triangle T E=0)$. If a positive charge goes toward lower $P E$, then it is also going toward lower V (potential), since $V=P E / q$. In this case, we can see that the test charges will be moving away from both q_{1} and q_{2} (i.e., moving toward lower V), so there must be a repulsive force, and therefore q_{1} and q_{2} are both positive.
4. For a test charge $q_{\text {test }}$, we know that its potential energy near q_{1} is given by $P E=k q_{1} q_{\text {test }} / r$, so we can see that the potential V that it experiences near q_{1} is given by

$$
V_{q_{1}}=\frac{P E\left(q_{\text {test }}\right)}{q_{\text {test }}}=\frac{k q_{1}}{r} \quad\left[\text { potential near } q_{1}\right]
$$

For q_{2} we will have

$$
V_{q_{2}}=\frac{k q_{2}}{r} \quad\left[\text { potential near } q_{2}\right]
$$

If we compare point $\mathrm{D}\left(3\right.$ meters away from $\left.q_{1}\right)$ and point F (6 meters away from q_{2}), we see that the potential is 1.0 volt at both of these points. This means that

$$
1.0 \text { volt }=\frac{k q_{2}}{6}=\frac{k q_{1}}{3}
$$

And from this we can figure out that $q_{2}=2 q_{1}$.
5. As shown in $\# 4, q_{1} / q_{2}=0.5$
6. We can read off from the diagram the following values:

$$
\begin{aligned}
& V_{A}>2.0 \mathrm{~V} \\
& V_{B}=1.0 \mathrm{~V} \\
& V_{C}=2.0 \mathrm{~V} \\
& V_{D}=1.0 \mathrm{~V} \\
& \left.V_{E} \approx 0.6 \mathrm{~V} \text { [approximately }\right] \\
& V_{F}=1.0 \mathrm{~V} \\
& V_{G} \approx 0.75 \mathrm{~V} \text { [approximately, but certainly larger than } V_{E} \text {) }
\end{aligned}
$$

From this list, we can rank them as follows: $\mathrm{A}>\mathrm{C}>\mathrm{B}=\mathrm{D}=\mathrm{F}>\mathrm{G}>\mathrm{E}$
$[\mathrm{A}, \mathrm{C}, \mathrm{B}=\mathrm{D}=\mathrm{F}, \mathrm{G}, \mathrm{E}]$
7. The magnitude of the electric field in the vicinity of an isolated point charge Q (such as q_{1} and q_{2}) is given by the equation $E=k Q / r^{2}$. Using this formula, and our result from \#5 that $q_{2}=2 q_{1}$, we can determine the value of E at all of the given points, in terms of k and q_{1}, as follows:

$$
\begin{aligned}
& E_{A}=k q_{2} /(2.5 \mathrm{~m})^{2}=k q_{2} /\left(6.25 \mathrm{~m}^{2}\right)=k\left(2 q_{1}\right) /\left(6.25 \mathrm{~m}^{2}\right)=k q_{1} /\left(3.125 \mathrm{~m}^{2}\right) \\
& E_{B}=k q_{2} /(6 \mathrm{~m})^{2}=k q_{2} /\left(36 \mathrm{~m}^{2}\right)=k\left(2 q_{1}\right) /\left(36 \mathrm{~m}^{2}\right)=k q_{1} /\left(18 \mathrm{~m}^{2}\right) \\
& E_{C}=k q_{2} /(3 \mathrm{~m})^{2}=k q_{2} /\left(9 \mathrm{~m}^{2}\right)=k\left(2 q_{1}\right) /\left(9 \mathrm{~m}^{2}\right)=k q_{1} /\left(4.5 \mathrm{~m}^{2}\right) \\
& E_{D}=k q_{1} /(3 \mathrm{~m})^{2}=k q_{1} /\left(9 \mathrm{~m}^{2}\right) \\
& E_{E} \approx k q_{1} /(5.5 \mathrm{~m})^{2}=k q_{1} /\left(30.25 \mathrm{~m}^{2}\right)[\text { approximately }] \\
& E_{F}=k q_{2} /(6 \mathrm{~m})^{2}=k q_{2} /\left(36 \mathrm{~m}^{2}\right)=k\left(2 q_{1}\right) /\left(36 \mathrm{~m}^{2}\right)=k q_{1} /\left(18 \mathrm{~m}^{2}\right) \\
& E_{G} \approx k q_{1} /(4.6 \mathrm{~m})^{2}=k q_{1} /\left(21.16 \mathrm{~m}^{2}\right)[\text { approximately }]
\end{aligned}
$$

This now gives the following ranking: $E_{A}>E_{C}>E_{D}>E_{B}=E_{F}>E_{G}>E_{E}$
[A, C, D, B = F, G, E]
8. From the list in $\# 6$, we can determine the following:

$$
\begin{aligned}
& \mathrm{A}>(2.0 \mathrm{~V}-1.0 \mathrm{~V})>1.0 \mathrm{~V} \\
& \mathrm{~B}=(1.0 \mathrm{~V}-1.0 \mathrm{~V})=0 \mathrm{~V} \\
& \mathrm{C}=|1.0 \mathrm{~V}-2.0 \mathrm{~V}|=1.0 \mathrm{~V} \\
& \mathrm{D}=(1.0 \mathrm{~V}-0.6 \mathrm{~V}) \approx 0.4 \mathrm{~V} \\
& \mathrm{E}=(1.0 \mathrm{~V}-1.0 \mathrm{~V})=0 \mathrm{~V}
\end{aligned}
$$

This gives the following ranking: $\mathrm{A}>\mathrm{C}>\mathrm{D}>\mathrm{B}=\mathrm{E}$
[$\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{B}=\mathrm{E}$]
9. Since only the electrical force is acting in this case, the total energy $T E$ is constant, so $\Delta T E=0$, which means that $\triangle K E+\triangle P E=0$. The protons are all the same mass, so whichever acquires the most kinetic energy will be the one with the fastest speed (since $K E=1 / 2 m v^{2}$). Since $\Delta K E=-\triangle P E$, the proton that loses the largest amount of potential energy will acquire the largest amount of kinetic energy. Now, since $\Delta P E=\Delta V / q$, and these are all positive charges of the same magnitude, the largest loss of potential energy will be associated with the largest loss of potential. Then all we have to do is find out which proton experiences the largest decrease in potential.

Proton A goes from point A to point B , and so experiences a change in potential from $\approx 2.5 \mathrm{~V}$ to 1.0 V ; therefore its decrease in potential is approximately 1.5 V .

Proton B goes from point D to point E ; its potential goes from 1.0 V to approximately 0.6 V , so its decrease in potential is approximately 0.4 V .

Proton C goes from point D out to a point 100 km from the origin. That far away from the origin, the potential will be very close to 0 V , so this proton experiences a decrease in potential of nearly 1.0 V .

From this, we can rank the final speeds of the protons as follows: $\mathrm{A}>\mathrm{C}>\mathrm{B}$.
10. In this situation, the kinetic energy of the protons does not change. However, external work is being done by a nonconservative force (you, pushing). Since $W_{\text {nonconservative }}=\Delta T E$, in this case the amount of work you have to do is equal to the increase in potential energy, $\triangle P E$ (because here, $\triangle K E=0$). For the same reasons as discussed in $\# 9$, the largest increase in potential energy will be associated with the largest increase in potential. Therefore, the most work will have to be done on the proton that experiences the largest increase in potential, which is proton A. Again, the correct ranking will be $\mathrm{A}>\mathrm{C}>\mathrm{B}$.

