Vector Exercise

1. Below are shown vectors \vec{A} and \vec{B} . Consider \vec{R} , the vector sum (the "resultant") of \vec{A} and \vec{B} , where $\vec{R} = \vec{A} + \vec{B}$. Which of the four other vectors shown $(\vec{C}, \vec{D}, \vec{E}, \vec{F})$ has most nearly the *same direction* as \vec{R} ?

Answer

2. In the space to the right, draw $\vec{\mathbf{R}}$ where $\vec{\mathbf{R}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$. Clearly label it as the vector $\vec{\mathbf{R}}$. Explain your work.

Answer			
_			

3. In the figure below there are two vectors \vec{A} and \vec{B} . Draw a vector \vec{R} that is the sum of the two, (i.e. $\vec{R} = \vec{A} + \vec{B}$). Clearly label the resultant vector as \vec{R} .

Vector Exercise

4. In the figure below, a vector \vec{R} is shown that is the *net resultant* of two other vectors \vec{A} and \vec{B} (i.e. $\vec{R} = \vec{A} + \vec{B}$). Vector \vec{A} is given. Find the vector \vec{B} that when added to \vec{A} produces \vec{R} ; clearly label it \vec{B} . **DO NOT** try to combine or add \vec{A} and \vec{R} directly together!!! Briefly explain your answer.

Answer				

5. In the figure below are given three vectors $\vec{1}$, $\vec{2}$, and $\vec{3}$. There exists a resultant sum, \vec{R} , of the vector addition of the three component vectors (i.e., $\vec{R} = \vec{1} + \vec{2} + \vec{3}$). In the grid below, draw the resultant vector \vec{R} .

