Vector Exercise

1. Below are shown vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$. Consider $\overrightarrow{\mathbf{R}}$, the vector sum (the "resultant") of $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$, where $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$. Which of the four other vectors shown $(\overrightarrow{\mathbf{C}}, \overrightarrow{\mathbf{D}}, \overrightarrow{\mathbf{E}}, \overrightarrow{\mathbf{F}})$ has most nearly the same direction $\overrightarrow{\mathbf{R}}$?

Answer \qquad
2. In the space to the right, draw $\overrightarrow{\mathbf{R}}$ where $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$. Clearly label it as the vector $\overrightarrow{\mathbf{R}}$. Explain your work.

Answer \qquad
3. In the figure below there are two vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$. Draw a vector $\overrightarrow{\mathbf{R}}$ that is the sum of the two, (i.e. $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$). Clearly label the resultant vector as $\overrightarrow{\mathbf{R}}$.

Vector Exercise

4. In the figure below, a vector $\overrightarrow{\mathbf{R}}$ is shown that is the net resultant of two other vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ (i.e. $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$). Vector $\overrightarrow{\mathbf{A}}$ is given. Find the vector $\overrightarrow{\mathbf{B}}$ that when added to $\overrightarrow{\mathbf{A}}$ produces $\overrightarrow{\mathbf{R}}$; clearly label it $\overrightarrow{\mathbf{B}}$. DO NOT try to combine or add $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{R}}$ directly together!!! Briefly explain your answer.

Answer \qquad
5. In the figure below are given three vectors $\overrightarrow{\mathbf{1}}, \overrightarrow{\mathbf{2}}$, and $\overrightarrow{\mathbf{3}}$. There exists a resultant sum, $\overrightarrow{\mathbf{R}}$, of the vector addition of the three component vectors (i.e., $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{1}}+\overrightarrow{\mathbf{2}}+\overrightarrow{\mathbf{3}}$). In the grid below, draw the resultant vector $\overrightarrow{\mathbf{R}}$.

