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We report the results of an investigation into physics students’ understanding of vector addition,
magnitude, and direction for problems presented in graphical form. A seven-item quiz, including
free-response problems, was administered in all introductory general physics courses during the
2000/2001 academic year at Iowa State. Responses were obtained from 2031 students during the
first week of class. We found that more than one quarter of students beginning their second semester
of study in the calculus-based physics course, and more than half of those beginning the second
semester of the algebra-based sequence, were unable to carry out two-dimensional vector addition.
Although the total scores on the seven-item quiz were somewhat better for students in their second
semester of physics in comparison to students in their first semester, many students retained
significant conceptual difficulties regarding vector methods that are heavily employed throughout
the physics curriculum. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

Vector concepts and calculation methods lie at the hea
the physics curriculum, underlying most topics covered
introductory courses at the university level. As Knight1 has
emphasized, the vector nature of forces, fields, and kinem
cal quantities requires that students have a good gras
basic vector concepts if they are to be successful in mas
ing even introductory-level physics. Knight has alluded
the surprising lack of published research regarding stud
learning of vector concepts, and hisVector Knowledge Tes
provided an invaluable first glimpse into the pre-instructi
vector knowledge of students enrolled in the calculus-ba
physics course. Most of the problems on theVector Knowl-
edge Testfocus on algebraic aspects of vectors. Another s
nificant investigation has been reported by Kanim,2 who ex-
plored students’ understanding of vector concepts in
context of electric forces and fields. Aguirre,3 and Aguirre
and Rankin4 have studied students’ ideas about vector ki
matics, but their inquiry focused on the interrelationsh
among velocity, acceleration, and force rather than prope
of vectorsper se. Recently, Ortizet al.5 have reported on
student learning difficulties related to basic vector operati
~such as dot and cross products! as employed in introductory
physics courses.

Our instructional experience has led us to believe that
dents’ poor understanding of vector ideas posed in graph
form presents a particularly troublesome obstacle to th
success in mastering physics concepts. Graphical and
metrical interpretations of vector ideas pervade the enti
of the general physics curriculum. Despite most stude
previous exposure to vector concepts in mathematics cou
or in high-school physics~as indicated by various surveys!,
and the heavy emphasis we have placed on those conce
our own instruction, students’ persistent confusion about f
damental vector notions has bedeviled our instructional
forts. We decided therefore to carry out a systematic inve
gation of university physics students’ knowledge of ba
ideas of vector addition, magnitude, and direction during
initial weeks of their physics courses. To this end, we s
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veyed students in both the first- and second-semester cou
of the two-semester general physics sequence, both
algebra-based and calculus-based courses.

II. METHODS

We constructed a quiz containing seven vector proble
posed in graphical form~see the Appendix!. The problems
assess whether students can correctly identify vectors
identical magnitudes and directions, and whether they
carry out vector addition in one and two dimensions. On fi
of the problems, students are asked to give a free respon
to select multiple options from a list. On the other two~#3
and #7!, they are given possible choices. On four proble
students are explicitly prompted to provide explanations
their work.

This diagnostic quiz was administered to students in
introductory general physics courses taught at Iowa S
University ~ISU! during the 2000/2001 academic year.~We
did not include in our study one-semester elementary phy
courses using little or no mathematics; these courses ar
tended as surveys for nontechnical students.! Very minor re-
visions were made to the quiz between fall and spring sem
ters.

ISU is a large public university with a focus on enginee
ing and technical subjects. The average ACT Mathema
score of all freshmen entering ISU in fall 2000 was 24
compared to the national average of 21.8 for students w
completed the core college-preparatory curriculum.6 ISU
ranks 16th nationally in number of undergraduate engine
ing degrees awarded. It therefore seems unlikely that
results will underestimate the average performance leve
physics students nationwide.

The algebra-based general physics sequence consis
Physics 111~mostly mechanics!, and Physics 112~mostly
electricity and magnetism, and optics!. The calculus-based
sequence is comprised of Physics 221~mechanics, electro-
statics, and dc circuits!, and Physics 222~magnetism and
electromagnetism, thermal physics, optics, and modern p
ics!. In this paper, we will use the following designations f
these courses: Physics 111: A-I; Physics 112: A-II; Phys
630jp/ © 2003 American Association of Physics Teachers
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Fig. 1. Responses of students to individual problems
the vector concept diagnostic. Percent correct respon
shown for students in~a! first- @A-I # and second-
semester@A-II # algebra-based introductory physics;~b!
first- @C-I# and second-semester@C-II# calculus-based
introductory physics.
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221: C-I; Physics 222: C-II, where I and II designate the fi
and second courses in each sequence, respectively.~That is, I
is primarily a mechanics course, while II is primarily
course on electricity and magnetism. All four courses
taught during both the fall and spring semesters.! Results
were obtained from a total of 2031 students, divided into
four courses as follows: Algebra-based physics: A-I, 520
tal ~fall: 287; spring: 233!; A-II, 201 total ~fall: 83; spring:
118!. Calculus-based physics: C-I, 608 total~fall: 192;
spring: 416!; C-II, 702 total ~fall: 313; spring: 389!. ~In the
paper we refer to these courses as the ‘‘four groups.’’! Be-
cause the quiz was administered in both fall and spring
ferings in all four courses during the academic year~that is,
twice each in A-I, A-II, C-I, and C-II for a total of eigh
administrations!, many students took the quiz twice, once
their fall-semester course and again in their spring-seme
course. The number of repeat test-takers is not known.

We did not survey the students in this study sample w
regard to their previous background in physics and ma
ematics. However, surveys carried out in ISU phys
courses during the summer and in other years have indic
that nearly three quarters of students in the algebra-ba
courses, and more than 90% of those in the calculus-ba
courses, have studied physics in high school. In these
veys, a substantial majority of students report previous st
of vectors including two-dimensional vector addition, eith
in their high-school physics classes or in high-school and
college math courses.~This is the case for about two thirds o
students in the algebra-based course, and about 90% of t
in the calculus-based course.! These results are consiste
with Knight’s finding that 88% of students in the first quart
of the introductory calculus-based physics course at his
stitution had previous instruction on vectors. Of course,
students in the second-semester courses~that is, Physics 112
@A-II # and Physics 222@C-II#! have had extensive exposu
to vector representations and calculations in their fi
semester university courses. They represent 44% of the
population sample in this study.

The quiz was administered in recitation sections~around
25 students each! during the first week of class in all fou
courses, before instruction on vectors took place. The q
did not count toward a course grade and was not returne
631 Am. J. Phys., Vol. 71, No. 6, June 2003
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the students. Students were asked to respond to the qu
that instructors could get a better idea of their backgrou
knowledge in vectors. They were asked to fill in their nam
on the quiz to aid in record keeping. The same procedure
followed in both fall and spring semesters. Responses w
obtained from the great majority of enrolled students. R
sponses on each problem were graded as correct or incor
and frequently appearing errors were noted and tabulate

III. RESULTS

All statistical results we will cite in this paper~except for
those in Sec. III C! reflect averages over the entire samp
that is, fall- and spring-semester offerings combined in
case of each of the four courses.

A. Responses to problems

Figure 1 shows the percentage of correct responses to
quiz item for students in all four courses. We now proceed
discuss the students’ responses to each individual proble
more detail.

Problem #1:Vector magnitude. Performance on this pro
lem was generally good, with a range of 63%–87% corr
responses for the four different groups. However, more t
one third of the students in A-I didnot answer this question
correctly, which indicates that student knowledge even
this basic vector property cannot be taken for granted. T
most common error was to assume that vectors can o
have equal magnitudes when they are parallel or antipar
to each other~for example, choosinguD¢ u5uG¢ u, but not uD¢ u
5uF¢ u5uG¢ u).

Problem #2:Vector direction. A significant number of stu
dents in all classes made errors on this question~23%–45%
incorrect responses!. It is notable that there was very little
difference in performance between students in the first-
second-semester courses, both in the algebra-based
calculus-based sequences. This small performance incre
seems to suggest that, particularly on this problem, little
crease in understanding occurs during the first-seme
course~that is, in A-I and C-I!.
631N.-L. Nguyen and D. E. Meltzer
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The single most common incorrect response was to

both vectorsF¢ andG¢ , instead ofF¢ only, thus reflecting con-
fusion about the requirement that vectors with the same
rection be parallel to each other.~Or, perhaps this respons
indicates confusion about how torecognizewhen two vec-
tors are parallel.! This error represented 20% of all respons
~almost half of all incorrect responses! in the algebra-based
course, with no significant difference between A-I and A-
However, there also were a significant number of stude
responding that the answer was ‘‘none’’; this category co
prised 11% of all responses in the algebra-based course~one
quarter of all incorrect responses in both A-I and A-II!. Re-
markably, those students who answered ‘‘none’’ very of
asserted explicitly that all of the angles—or the ‘‘slopes’’
were different, despite the presence of the grid, which w
intended to allow easy evaluation of the angles. The ot
option appearing with some frequency on students’ respo

was vectorC¢ , thus equating the direction of vectorA¢ with

that of 2A¢ . @It is worth noting that outside the U.S., th
property we refer to as ‘‘direction’’ often is assumed to co
prise two separate properties, that of ‘‘orientation’’~line of
action! and ‘‘sense’’~loosely, ‘‘which way it points’’!, see,
for example, Ref. 7.#

Problem #3:Qualitative vector addition. Performance o
this problem was very good for students in all courses, w
correct responses in the 83%–96% correct range. Howe
students were not asked to provide explanations of their
swer, and evidence provided by student performance
problems #4 and #5 strongly suggests that many stud
arrived at the correct answer for problem #3 through use
clearly incorrect algorithm~that is, the ‘‘split-the-difference’’
algorithm to be discussed after problem #5!. Because use o
this algorithm reflects substantial confusion regarding vec
addition, it seems probable that problem #3 does not in it
provide valid assessment of students’ understanding of
vector operation.

Problem #4: One-dimensional vector addition. The st
dents in the calculus-based courses performed very wel
problem #4: C-I, 84% correct; C-II, 92% correct. However
substantial fraction of the students in the algebra-ba
courses were not able to solve this problem: A-I, 58% c
rect; A-II, 73% correct.

In A-I, 19% of all incorrect responses consisted of a tw
headed arrow as shown in Fig. 2~a!; in A-II, this response
was only 11% of the incorrect responses. Often this arr
was eight boxes long, but other lengths were common. R

resentative explanations for this response were, ‘‘R¢ is made

by connecting the end ofA¢ to the end ofB¢ , ’’ and ‘‘It is just
the two vectors put together.’’ Another common error in t
algebra-based course~23% of all incorrect responses in A-
and A-II combined! was to show a horizontal resultant wit
incorrect magnitude and/or direction.

Many students produced a sloping resultant; in A-I the
represented 20% of the incorrect responses, which ros
36% in A-II. Most of these students did not show their wo
but those who did typically had a diagram similar to one
those in Figs. 2~b!–2~d!. Sometimes these students wou
explain that they were using the ‘‘tip-to-tail’’ method, o
words to that effect.

Performance on problem #4 was not as good as it was
problem #3, particularly in the algebra-based courses.
suspect that, in comparison to problem #3, it may be m
632 Am. J. Phys., Vol. 71, No. 6, June 2003
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difficult to obtain a correct solution for problem #4 by usin
an incorrect algorithm. We will return to this issue in th
discussion of problem #5.

Problem #5:Two-dimensional vector addition. The va
majority of problems in the general physics curriculum th
involve vector quantities require an understanding of t
basic operation. We found that most students in the calcu

Fig. 2. Common student errors on problem #4~addition of collinear vec-
tors!: ~a! two-headed arrow;~b! tail-to-tail; ~c! tip-to-tip; ~d! re-orientation
of top vector.

Fig. 3. Common student errors on problem #5~addition of noncollinear
vectors!: ~a! zero vertical component;~b! split-the-difference algorithm;~c!
incorrect parallelogram addition;~d! incorrect horizontal component;~e!
tip-to-tip error.
632N.-L. Nguyen and D. E. Meltzer



e

w

s
h
m

n
se

to

r
er
-
ica
or

o

ns
e
til
ib

t
t i
en
ul
th

th

os
w
ta
lit
ha

te

by
se
we

o
-

al

ho
e

th
o
he
th

#3
e
u-

-
ms
pu-

thm
tor
the
m

to
re-
fe-

the
or-
wer,
m
in

or-
of
red

e

ulus-
hly
o-

stu-
red

lem

eed

d
e

cor-
er-

ob-
ey

esti-

o

of
rses

e to

ir
nk-

the
t

based course solved this problem correctly~58% in C-I, 73%
in C-II!, but only a minority of students in the algebra-bas
course could do so~22% in A-I, 44% in A-II!.

The most common error for all four groups was to dra
the resultant vector aligned along the horizontal axis~or
nearly so!, pointing toward the left@Fig. 3~a!#. The magni-
tudes of the horizontal components in this class of respon
varied widely. Although some of the students who made t
error were successful in determining the net horizontal co
ponent~that is, five boxes, leftward!, all failed to realize that
the net vertical component would be one box upward. Ma
students’ diagrams explicitly showed the algorithm they u

to obtain this result:Join vectorsA¢ and B¢ at a common
vertex, and form the resultant by ‘‘splitting the difference’’
obtain a net vertical component of zero@see Fig. 3~b!#. This
response was usually a clear attempt to implement a pa
lelogram addition rule. Some students explicitly used a v
similar algorithm@see Fig. 3~c!# to obtain an apparently re
lated error, that is, a resultant vector with the correct vert
component and pointing toward the left, but with an inc
rect horizontal component. Although a particular example
this response is shown in Fig. 3~d!, the magnitudes of the
horizontal components represented in students’ respo
covered a wide range. It was not clear to us how they w
able to arrive at the correct vertical component while s
having an incorrect horizontal component. It seems poss

that the positioning of theA¢ andB¢ vectors on the page—tha
is, one on top of the other—contributed to this outcome. I
noteworthy that in a large proportion of cases where stud
drew diagrams suggestive of the parallelogram addition r
they were unsuccessful in arriving at a correct answer to
problem. Instead they produced variants of Figs. 3~b! or 3~c!,
or made some other error due to imprecise drawing of
parallelogram.

Most students who drew resultant vectors similar to th
in Figs. 3~a! and 3~d! did not show a diagram to explain ho
they obtained their result. Therefore, we cannot be cer
that they used the same algorithm to obtain this sp
difference resultant. The proportion of the entire class t
gave incorrect responses corresponding to either Fig. 3~a! or
Fig. 3~d! ~regardless of the horizontal component! was A-I,
42%; A-II, 29%; C-I, 21%; and C-II, 13%.

The next most common error on this problem origina
from mistaken employment of a ‘‘tip-to-tip’’ algorithm in

which the resultant vector begins at the tip of vectorA¢ and

ends at the tip of vectorB¢ or, less often, points from the tip

of B¢ to that of A¢ . ~This error also has been described
Knight.1! In this case the interpretation of students’ respon
was unambiguous because their diagrams explicitly sho
the algorithm they had employed. There are two versions
this error: either the vectors are first brought together t
common vertex~see Fig. 3~e!; this procedure actually pro

duces the difference vector@B¢ 2A¢ #), or they are left in place
and the ‘‘resultant’’ arrow is drawn directly on the origin
diagram. This type of response~either version! was given by
9% of students in the algebra-based course and 6% of t
in the calculus-based course, with very little difference b
tween the I and II courses.

As was noted in connection with problems #3 and #4,
number of correct responses on problem #3 was well ab
that on problem #4. We now see that it was also far hig
than the correct response rate on problem #5. In view of
633 Am. J. Phys., Vol. 71, No. 6, June 2003
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obvious route for obtaining a correct answer to problem
by using the incorrect ‘‘split-the-difference’’ algorithm, w
now believe that problem #3 is not a valid indicator of st
dents’ knowledge of vector addition.

Problem #6:Two-dimensional vector subtraction. In prin
ciple this problem could be solved with the same algorith
used for problem #5, combined with some algebraic mani

lation and knowledge of how to form2A¢ from A¢ . However,
students probably have less practice with a specific algori
for carrying out vector subtraction, compared with vec
addition. That is, students may have memorized ‘‘place
tail of one to the tip of the other’’ as an addition algorith
without gaining enough understanding to extend this idea
a similar problem posed as a subtraction. One might the
fore expect that performance on problem #6 would be in
rior to that on problem #5, and indeed it was. However
difference was generally rather small: only 4–5% fewer c
rect in the calculus-based course, and 4% and 9% fe
respectively, in A-I and A-II. Overall, error rates on proble
#6 ranged from 32% incorrect in C-II, up to 82% incorrect
A-I.

In the calculus-based course~both C-I and C-II com-
bined!, 83% of the students who answered problem #5 c
rectly also answered problem #6 correctly. Similarly, 89%
those who answered problem #6 correctly also answe
problem #5 correctly.~There was no significant differenc
between C-I and C-II students regarding this pattern.! This
response pattern suggests that for students in the calc
based course, problem #5 and problem #6 provide a roug
equivalent indication of students’ understanding of tw
dimensional vector addition.

By contrast, in the algebra-based course, only 67% of
dents who answered problem #5 correctly also answe
problem #6 correctly. Of the students who answered prob
#6 correctly, 83% also solved problem #5.~Again, there was
no significant difference between A-I and A-II.! So, for stu-
dents in the algebra-based course, problem #6 was ind
significantly more difficult than problem #5 (p,0.01 ac-
cording to a z test for difference between correlate
proportions8!. In this case the two problems did not provid
equivalent indications of students’ knowledge, because a
rect solution to problem #6 was correlated with superior p
formance on this two-problem subset.

There were a wide variety of incorrect responses to pr
lem #6. Many students’ explanations made it clear that th

were trying to find aB¢ such thatR¢ would be the ‘‘average,’’

in some sense, ofA¢ and B¢ . However, lacking an algorithm
for this purpose, students often resorted to guessing or

mating the direction of vectorB¢ . A common response was t

drawB¢ as a horizontal vector~vertical component50! point-
ing to the right; one-quarter of all incorrect responses were
this type in both algebra-based and calculus-based cou
~algebra based, 26%; calculus based, 25%!. These vectors

were drawn either with their tails in contact with the tail ofA¢
or, more often, as isolated vectors in the blank grid spac

the right of A¢ and R¢ . Most students did not explain the
reasoning, but some offered clear descriptions of their thi

ing such as ‘‘R¢ should be a combination ofA¢ andB¢ so I tried

to put it betweenA¢ andB¢ ’’; ‘‘The magnitude ofB¢ andA¢ are
equal, so the direction of the resultant is directly between
two.’’ Overall, a large majority of students with incorrec
633N.-L. Nguyen and D. E. Meltzer



pt
ar
Fig. 4. Distribution of total scores on vector conce
diagnostic in percent of class obtaining a particul
score ~score range: 0–7!: ~a! first- @A-I # and second-
semester@A-II # algebra-based introductory physics;~b!
first- @C-I# and second-semester@C-II# calculus-based
introductory physics.
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responses to this problem realized thatB¢ would have a posi-
tive horizontal component, but were unable to determine
precise value.

Problem #7: Comparison of resultant magnitude. Th
problem is another application of vector addition for whi
students are unlikely to have memorized a specific algorit
With no grid available, students do not have at hand
straightforward a calculation procedure as might be e
ployed in problems #5 and #6. However, only a qualitat
response is required on problem #7, while a precise qua
tative answer is needed for problem #5; moreover, there
only three possible choices. This smaller selection of opti
may mitigate the additional challenge posed by problem
~if there is any!. In any case, the only group for whom pe
formance on problems #5 and #7 differed by more than
was students in A-I; they achieved 32% correct on probl
#7 compared to only 22% correct on problem #5. Howev
it is interesting to note that 23% of the C-II students w
successfully solved problem #5 also gave incorrect respo
to problem #7. It seems that the apparently superior algor
mic skill of the C-II students did not always translate to
situation in which a grid was lacking.

Many students who chose the correct~‘‘smaller than’’!
response in problem #7 gave a satisfactory explanation
their answer, often accompanied by a diagram that refle
use of the parallelogram or tip-to-tail addition rules to de
onstrate thatuR¢ Au,uR¢ Bu. Among those students who gav
incorrect answers, there was a preference for the ‘‘equal
response~that is, magnitude of resultant of pairA is equal to
that of pairB!, very often justified by an explanation such
‘‘the vectors inA and B are equal magnitude,’’ and some
times accompanied by an invalid application of the Pythag
ean formula to pairB. The ratio of ‘‘equal to’’ responses in
comparison to ‘‘larger than’’ responses was almost exa
1:1 in A-I, but in A-II the ‘‘equal to’’ response jumped in
popularity to nearly a 2:1 ratio compared to ‘‘larger than.’’
both C-I and C-II, the ‘‘equal to’’ response was the mo
common incorrect response by nearly a 3:2 ratio. The ‘‘lar
than’’ response was justified by the larger vertex angle or
‘‘larger area covered’’ in diagram A. Explanations such
these were typical: ‘‘A is larger because arrows are furth
634 Am. J. Phys., Vol. 71, No. 6, June 2003
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apart’’; ‘‘ A larger, the angle is greater between the vector
‘‘larger than because both vectors are farther apart than
ones inB.’’

B. Total score comparisons

The distribution of students’ total score on the diagnos
~maximum57.0! is shown in Fig. 4. The scores in A-I ar
fairly normally distributed around a mean value of 3.3, wh
the A-II distribution~mean score54.3! is somewhat bimodal.
The distributions in the calculus-based course are v
strongly skewed toward higher scores~although that in C-I is
also somewhat bimodal!. Mean scores for the calculus-base
course are C-I: 5.0; C-II: 5.6. These distributions suggest
the diagnostic is a good reflection of the mean level
knowledge of students in the algebra-based courses, whe
the average level of vector knowledge of students in
calculus-based courses goes beyond that characterize
this diagnostic.

C. Differences in performance between fall- and
spring-semester courses

We were surprised to find that on many of the quiz item
there appeared to be a significant difference in performa
between students in the fall and spring offerings of thevery
same course~for example, the fall and spring offerings o
A-I !. Students enrolled in C-I during the spring semester
2001 had higher scores on all seven quiz items than stud
in the fall 2000 semester of the same course. The m
scores~percent correct out of seven problems; s.d.5standard
deviation! were: spring, 2001 (N5416): 74% correct~s.d.
525%!; fall, 2000 (N5192): 65% correct~s.d.527%!. The
difference in mean scores is statistically significant at thep
50.0003 level according to a two-samplet-test. A very simi-
lar fall–spring discrepancy was found for students in A
~spring, 51%; fall, 44%;p,0.001). For C-II there was a
smaller but still statistically significant superiority, this tim
however in thefall semester mean scores~fall, 83%; spring,
78%, p,0.01) while in A-II, the fall–spring difference in
mean scores was very small and not statistically significa
634N.-L. Nguyen and D. E. Meltzer
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For C-II, on a three-item group of closely related proble
~problems #5, #6, and #7!, fall performance was significantly
better~fall, 76%; spring, 64%;p,0.001 according to a chi
square test!. In A-II, a fall–spring difference on the sam
three-item group was again present~fall, 49%; spring, 38%!,
but did not quite rise to the level of statistical significan
(p50.12), perhaps because of the relatively small sam
size.

Although it seems clear that the discrepancy in perf
mance between students in the fall- and spring-semeste
ferings of A-I and C-I is not due to chance—and the sa
may be true for the inverse effect observed in A-II a
C-II—we do not have data that would allow us to determ
the cause. Many factors might contribute~for example, stu-
dents repeating courses, advanced students preferring
sequence’’ offerings, etc.!, but at this point we can only
speculate on this matter.

IV. DISCUSSION

The concepts probed in this diagnostic are among the m
basic of all vector ideas. Students are assumed to ha
good understanding of them throughout all but the first we
or two of the introductory physics curriculum. Although
very brief ~less than one lecture! discussion related to thes
concepts is usually provided near the beginning of the fi
semester course, students often are assumed to have
exposed to vector ideas either in their mathematics cou
or in high-school physics, with the further assumption th
very little review is needed. The emphasis of the discuss
and use of vector concepts in the college-level phys
course is decidedly on the algebraic aspects and is dire
toward calculational competence. As a consequence, gra
cal and geometrical interpretations of vector operations m
be somewhat neglected.

~As a point of reference on this issue, we note that of
seven high-school physics textbooks surveyed in a re
study,9 all but one10 cover vector concepts to some exte
including one- and two-dimensional vector addition p
sented in graphical form. Most of these texts go into cons
erable detail. No doubt the actual extent of vector cover
in high-school physics courses varies very widely through
the nation.!

We found that a significant proportion of students in o
sample had serious conceptual confusion related to b
vector concepts represented in graphical form, even tho
surveys suggest that most of them had previous instructio
vectors.~More than 44% of students in our sample had tak
at least one full semester of university-level mechanic!
Even in the second semester of the calculus-based ph
course~that is, C-II!—in which students are assumed fro
the very first day to have considerable expertise with vec
methods—more than one-quarter of the class could not c
out a two-dimensional vector addition. Our data from t
second semester of the algebra-based course~that is, A-II!
suggest that the majority of students in the first semeste
this course~A-I ! never successfully mastered this operatio
This finding should have rather sobering implications for
structors who assume that, for example, students begin
study of electric field superposition are competent with v
tor addition.

On many of our quiz items, improvements in student p
formance from first to second semester were small or p
tically nonexistent, indicating that little learning of the ide
635 Am. J. Phys., Vol. 71, No. 6, June 2003
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had taken place during the first-semester course. This s
performance improvement was observed for both algeb
based and calculus-based courses. It seems that the bu
students’ basic geometrical understanding of vectors
brought with them to the beginning of their university phy
ics course and was little changed by their experiences in
course, at least during the first semester.

It seemed clear that, although most students were un
to solve two or more of the problems, they did have so
degree of basic knowledge which they attempted to apply
the problems they missed. For instance, there often were
forts to apply a tip-to-tail rule or a parallelogram additio
rule which were unsuccessful due to imprecise execut
Frequently, students did not accurately copy the magnit
and/or the direction of the vectors they were attempting
add. Often, they were uncertain as to which ‘‘tail’’ was su
posed to be in contact with which ‘‘tip.’’

Many students had an intuitive feel for how vectors sho
add which, it was clear, was based on their experience w
forces. Although the word ‘‘force’’ is not used in the quiz
many students referred to the vectors as ‘‘forces’’ and u
dynamical language to describe their thinking, such as h
one vector was ‘‘pulling’’ the other in a certain direction, o
how the ‘‘pulls’’ of two vectors would balance out. In man
cases students were able to estimate the approximate d
tion of a resultant without being able to give a correct qua
titative answer.

It seemed to us that many of the students’ errors co
perhaps be traced to a single general misunderstanding,
is, of the concept that vectors may be moved in space
order to combine them as long as their magnitudes and
rections are exactly preserved. We suspect that, to some
tent, this misunderstanding results in part from lack of a cl
concept of how to determine operationally a vector’s dire
tion ~through slope, angle, etc.!

As mentioned in Sec. I, very few reports of students’ ve
tor understanding have been published. We may make d
comparison, however, with the results reported by Knig1

for problem 5 of hisVector Knowledge Test. This problem is
very similar to problem #5 on our own quiz. Knight foun
that 43% of students in the first-quarter calculus-ba
course at California Polytechnic State University, San L
Obispo, were able to answer that problem correctly. T
statistic may be compared to the 58% correct response
we observed on problem #5 in the first-semester calcu
based course~C-I! at ISU. Although the difference is statis
tically significant it is not particularly large, and might b
accounted for by slight differences both in the test proble
and in the student populations.

Another comparison we may make is to the results
ported by Kanim on a problem involving net electrical for
on a charge;11 this problem is similar to our problem #7. H
reports that 70% of students in a second-semester calcu
based course at the University of Illinois gave a correct
sponse to that question, nearly identical to the 68% cor
response rate to problem #7 in our second-semester calc
based course~C-II!. Kanim reports similar results on relate
problems among students at the University of Washing
and elsewhere.

V. CONCLUSION

In previous investigations, Knight1 and Kanim2 have
documented a variety of serious student difficulties with b
635N.-L. Nguyen and D. E. Meltzer
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algebraic and graphical aspects of vector concepts am
students in introductory physics courses at several ins
tions similar to our own. Their results and ours consisten
support a conclusion that significant additional instruction
vectors may be needed if introductory physics students ar
master those concepts. We suspect that most instruc
would be unsatisfied with a situation in which more than h
of the students are still unable, after a full semester of stu
to carry out two-dimensional vector addition~as we found to
be the case in the algebra-based course!.

It is clear from our findings that many students have s
stantial intuitive knowledge of vectors and vector superpo
tion, obtained to some extent by study of mechanics, and
are unable to apply their knowledge in a precise and th
fore fruitful manner. They seem to lack a clear understand
of what is meant by vector direction, of how a vector may
‘‘moved’’ so long as its magnitude and direction are stric
preserved, and of exactly how to carry out such moves
parallel transport. Many students are confused about the
to-tail and parallelogram addition rules.

One way in which vector addition may be introduced
through the use of displacement vectors, because studen
have experiences that could allow understanding of ho
50-m walk to the east and subsequent 50-m walk to the n
is equivalent to a 71-m walk to the northeast. Students co
be guided to determine similar equivalent displacement
perhaps initially by using a grid—when the component d
placements are at arbitrary angles. In order to solidify
notion of vector addition, it also would be important for st
dents to practice applying these methods when no grid
other means for quantitative measurement is available. M
of the responses by students in our study~in particular, to
problem #7! suggest that an ability to solve vector problem
when a grid is available do not always translate to a sim
ability in the absence of a grid. Recent interviews carried
by our group lend support to this observation.12 We believe
that curricular materials that guide
636 Am. J. Phys., Vol. 71, No. 6, June 2003
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students through a series of exercises in which they perf
vector additions and subtractions~both with and without use
of a grid! may be useful in improving their understanding
these ideas.

Further research will be needed to determine whether
ricular materials based on such a strategy are effective
improving both students’ performance on assessments
as the quiz used in our study, and students’ ability to prov
explanations of their work with precision~describing a
clearly delineated calculational procedure! and accuracy~de-
scribing a correct calculational procedure!. Additional re-
search~such as that initiated by Oritzet al.5! is necessary to
probe students’ understanding of more advanced vector
cepts such as scalar and vector products.

As a consequence of our findings, we have increased
amount of instructional time we devote specifically to vec
concepts. We have developed some instructional materia13

in a format similar to the problems on our diagnostic qu
and continue development and assessment of additional
terials. Our group has carried out a preliminary series
student interviews to shed additional light on student und
standing of vector concepts. We are also extending our
search to assess students’ understanding of more adva
concepts, such as scalar and vector products, coordinate
tems and rotations, etc. In addition, we are examining s
dent understanding of vector ideas, specifically in the con
of physics concepts such as superposition of forces
fields.

ACKNOWLEDGMENTS

We are grateful for the assistance of Larry Engelhar
both for his collaboration in the data analysis and for t
insight he provided based on the student interviews he
recently carried out. This material is based in part upon w
supported by the National Science Foundation under G
No. REC-0206683.
ectors
APPENDIX: VECTOR CONCEPT QUIZ

Name:

Class: Section:

1. Consider the list below and write downall vectors that have the same magnitudes as each other. For instance if v

W¢ andX¢ had the same magnitude, and the vectorsY¢ , Z¢ , andA¢ had the same magnitudes as each other~but different fromW¢

andX¢ ) then you should write the following:uWu5uXu, uYu5uZu5uAu.

Answer
636N.-L. Nguyen and D. E. Meltzer



2. List all the vectors that have the samedirection as the first vector listed,A¢ . If there are none, please explain why.

Explain

3. Below are shown vectorsA¢ andB¢ . ConsiderR¢ , the vector sum~the ‘‘resultant’’! of A¢ andB¢ , whereR¢ 5A¢ 1B¢ . Which of
the four other vectors shown~C¢ ,D¢ ,E¢ ,F¢ ! has most nearly thesame directionasR¢ ?

Answer

4. In the space to the right, drawR¢ whereR¢ 5A¢ 1B¢ . Clearly label it as the vectorR¢ . Explain your work.

Explain

5. In the figure below there are two vectorsA¢ andB¢ . Draw a vectorR¢ that is the sum of the two,~i.e., R¢ 5A¢ 1B¢ !. Clearly
label the resultant vector asR¢ .
637 637Am. J. Phys., Vol. 71, No. 6, June 2003 N.-L. Nguyen and D. E. Meltzer



6. In the figure below, a vectorR¢ is shown that is thenet resultantof two other vectorsA¢ andB¢ ~i.e., R¢ 5A¢ 1B¢ !. Vector
A¢ is given. Find the vectorB¢ that when added toA¢ producesR¢ ; clearly label itB¢ . DO NOT try to combine or addA¢ andR¢
directly together! Briefly explain your answer.

Explain

7. In the boxes below are two pairs of vectors, pairA and pairB. ~All arrows have the same length.! Consider the
magnitude of theresultant ~the vector sum! of each pair of vectors. Is the magnitude of the resultant of pairA larger than,
smaller than, or equal tothe magnitudeof the resultant of pairB? Write an explanation justifying this conclusion.

Explain

Problem solutions:
1. uAu5uEu5uHu5uI u, uDu5uFu5uGu
2. F
3. D

7. smaller than.
s,’’

a-
n

y

on

c
a

, C.
, C.
ys.

ry
m

a!Electronic mail: nguyenn@iastate.edu
b!Electronic mail: dem@iastate.edu
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