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We report on students’ thinking regarding entropy in an introductory calculus-based physics course.
We analyzed students’ responses to a variety of questions on entropy changes of an arbitrarily
defined system and its surroundings. In four offerings of the same course we found that before
instruction, no more than 6% of all students could give completely correct responses to relevant
questions posed in both general and concrete contexts. Nearly two-thirds of the students showed
clear evidence of conservation-type reasoning regarding entropy. These outcomes were little
changed even after instruction. Targeted instruction that guided students to recognize that entropy is
not a conserved quantity appears to yield improved performance on qualitative questions related to
this concept. © 2009 American Association of Physics Teachers.
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I. INTRODUCTION

In this paper we report on student ideas and learning dif-
ficulties related to certain aspects of the second law of ther-
modynamics and its relation to changes in entropy. The goal
is to lay the framework for the creation of instructional ma-
terials and strategies which can help students improve their
understanding of second-law concepts.

The second law of thermodynamics limits the direction of
any naturally occurring processes to those that cause an over-
all increase in the entropy of a system plus its surroundings.
This key idea explains the direction of natural phenomena.
The concepts of entropy and the second law of thermody-
namics are key elements of the introductory curriculum for
undergraduate students in a wide variety of science and en-
gineering fields. In nontechnical contexts, ideas related to
entropy and the second law are often introduced in the con-
text of energy efficiency and conservation. A central idea is
that even under ideal conditions �for example, in a reversible
cycle�, the usable work that can be gained through a cyclic
process from a given amount of energy from heating is less
than 100% of the energy. This concept has broad implica-
tions but easily leads to misunderstandings and confusion.
Some investigators have made preliminary studies of student
thinking regarding the energy “degradation” aspect of the
second law and notions of the unidirectionality of natural
processes such as heat flow.1,2 In this paper we explore stu-
dent thinking on the idea that net entropy increase is a nec-
essary outcome of any natural process.

The idea that entropy increases has been introduced in a
variety of ways, depending on the course and the context. It
is often discussed in association with terms such as “sys-
tem,” “surroundings” �or “surrounding environment”�, “iso-
lated system,” and “universe,” as well as in connection with
the phrase “spontaneous process.” The meaning of entropy is
often associated with both macroscopic and microscopic no-

tions of disorder, although precise definitions are often omit-
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ted. At the introductory level most of the emphasis is on
changes in entropy, and students are often asked to calculate
entropy changes that occur during both reversible and irre-
versible processes.

In this paper we explore student thinking related to en-
tropy changes in natural processes in a variety of contexts
before and after instruction. We also describe the develop-
ment and initial testing of instructional materials and report
preliminary data regarding student learning gains from the
use of these materials.

Several papers have reported on student understanding of
thermodynamics at the introductory university level, particu-
larly in connection with student thinking regarding the first
law of thermodynamics3,4 and the ideal gas law.5,6 There also
have been several brief reports regarding student conceptions
in upper-level thermal physics courses,7–12 including prelimi-
nary reports of some of the work discussed in this paper.13

Aside from Refs. 2 and 13, there is little published research
on student understanding of entropy and the second law of
thermodynamics at the introductory university level.14

Kesidou and Duit1 interviewed 15- and 16-year-old stu-
dents who had received 4 years of physics instruction and
asked them questions on concepts related to the first and
second laws of thermodynamics. They reported that after in-
struction, most students had ideas that processes tend to go in
one direction only and that energy is in some sense “used
up” or becomes less available. These student notions were
largely based on intuitive ideas from everyday life and were
not phrased within a framework characterized by deep
understanding.

There have been several studies on student thinking about
entropy in the context of chemistry courses. Granville15 re-
ported that due in part to ambiguities in the usage of the
symbol “S,” chemistry students sometimes became confused
when applying the principle commonly stated as “�S�0 for
a spontaneous process.” This statement holds when S refers

to the entropy of the system plus that of its surroundings or
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equivalently to the entropy of an isolated system. However,
in some contexts S is used to refer to the entropy of the
�nonisolated� system only. Similarly, Thomas and Schwenz16

reported a strong tendency for physical chemistry students to
believe incorrectly that the second law of thermodynamics
required the entropy of the system to increase even in a con-
text where the system was not isolated. Conversely, Sözbilir
and Bennett17 found that many students in physical chemis-
try courses in Turkey did not recognize that entropy must
increase in an isolated system undergoing a spontaneous pro-
cess.

Cochran and Heron2 investigated student thinking on en-
tropy and its role in constraining allowed heat-engine effi-
ciencies. They found that for the most part, students did not
perceive the connection between constraints on engine effi-
ciencies and increases in total entropy of the system and its
surroundings.

II. CONTEXT OF THE INVESTIGATION

The bulk of this study was conducted with students in the
second semester of a year-long calculus-based introductory
physics course at Iowa State University �ISU�. This sequence
usually enrolls 700–800 students per calendar year. Most of
the students are engineering majors, but a few physics ma-
jors and computer science majors are included. The course
content varies slightly; the first semester usually covers me-
chanics and electric fields, and the second semester covers
magnetism, ac circuits, waves, fluids, and thermal physics.

Additional data were collected in a sophomore-level phys-
ics course at the University of Washington �UW� that covers
a wide range of topics on thermal physics. The students in
this course are primarily physics majors, all of whom have
completed UW’s introductory calculus-based physics courses
or the equivalent. This thermal physics course is, for most of
them, their first exposure to thermodynamics at the univer-
sity level.

To assess students’ previous exposure to entropy, we con-
ducted a brief background survey in the Fall 2006 offering of
the ISU course before any instruction on entropy or thermo-
dynamics. We found that of 272 students, 64% self-reported
having studied entropy previously, and at least that many
reported taking a specific course where entropy was dis-
cussed as part of the instruction �primarily in an introductory
chemistry course�. In many chemistry textbooks students are
introduced to entropy and the second law of thermodynamics
in the context of spontaneous processes, and it is emphasized
that the entropy of the universe must increase in such pro-
cesses. Chemistry texts are often very explicit in the use of
the formulation “system plus surroundings equals universe”
�more so than many current physics books�.18

III. QUESTIONS USED TO PROBE STUDENT
THINKING

A. Entropy increase in natural processes

We investigated students’ thinking regarding the concept
of entropy increase in natural processes,19 as well as the
meaning of system and surroundings in the application of
this concept. The second law of thermodynamics states that
the total entropy of the universe will increase in any real
process. In this context the universe can be divided into two
arbitrarily defined regions, a system and its surroundings �or

surrounding environment�. A system is a particular region of
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interest that is arbitrarily defined and enclosed by a bound-
ary. The surroundings comprise everything outside that
boundary.20 The second-law statement regarding increasing
entropy is often closely associated with students’ introduc-
tion to the entropy concept itself, and this statement has
sometimes been referred to as the most general statement of
the second law of thermodynamics.21

B. General-context question

The general-context question �see Fig. 1� relates to an ar-
bitrary system along with its surroundings; the system and
surroundings can exchange energy with each other. The con-
text is any naturally occurring process; no further details are
offered regarding either the system or the process. Students
are asked whether the entropy of the system will increase,
decrease, or remain the same during the process, or whether
the answer is not determinable with the given information.
That same question is posed regarding the entropy of the
surroundings, as well as the total entropy of the system and
its surroundings.

The correct answer is that neither the change in entropy of
the system nor that of its surroundings is determinable from
the given information because no information is provided
about the system or the process. The only physical constraint
is that the total entropy of the system plus the entropy of the
surroundings must increase as a consequence of the second
law.

C. Concrete-context question

The concrete-context question �see Fig. 2� relates to an
object in a thermally insulated room that contains air. The
object and the air are initially at different temperatures and
are allowed to exchange energy with each other. Students are
asked whether the entropy of the object will increase, de-
crease, or remain the same during the process, or whether the
answer is not determinable with the given information. That
same question is posed regarding the entropy of the air in the

Fig. 1. General-context question.
Fig. 2. Concrete-context question.
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room, as well as the entropy of the object and the air. A
fourth part of the question asks about the entropy change of
the universe.

Because the object and the air in the room are initially at
different temperatures, the higher-temperature entity �either
object or air� will transfer energy by heating to the lower-
temperature entity and thus undergo an entropy decrease.
The entity that gains energy will undergo an entropy in-
crease. The question does not specify whether the object
temperature is initially higher or lower than that of the air in
the room, and so there is insufficient information to deter-
mine the sign of the entropy change of the object and the air.
As in the general-context question, the only specification that
can be made is that the total entropy of the object plus air in
the room �and likewise the universe� must increase.

D. Spontaneous-process question

This multiple-choice question describes four processes
that involve a change in the entropy of a system and its
surrounding environment. In version A �see Fig. 3� students
are asked which of the processes can actually occur “in the
real world.” Version B of this question �see Fig. 4� includes
an incorrect answer option �response �E�� that corresponds to
the total entropy either increasing or remaining the same.
Version A does not include an answer option that combines
those two possibilities, that is, no answer corresponds to
�S�0.22

There is no constraint on the change in entropy of either
the system or the environment, so the entropy of either one
may increase or decrease. The sum of the two entropy

Fig. 3. Spontaneous-process question version A.

Table I. Percentage of preinstruction correct responses on the general- and co
intervals based on score variances among the four samples for the general-c
data in Appendices I and II �Ref. 23�.

Preinstruction,
general context,

N=1184
�four samples�

�%�

�a� Entropy change of system is not determinable. 42�10
�b� Entropy change of surroundings is not determinable. 42�6
�c� Entropy of the system+surroundings increases. 19�5

All correct, parts �a�–�c� 4�1
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changes must be positive, which means that processes II and
IV in both versions A and B are possible and all other pro-
cesses are disallowed.

IV. STUDENTS’ REASONING REGARDING THE
PRINCIPLE OF INCREASING ENTROPY

A. Responses before instruction

We administered the general-context question during four
offerings of the second-semester calculus-based introductory
physics course at ISU; in three of those four courses we also
administered the concrete-context question. The questions
were administered before any instruction on entropy and the
second law. Table I shows the proportion of students who
provided correct responses on each part of each question.23

For the general-context question only 19% of the students
gave the correct “increase” answer for part �c�, the entropy
change of the system plus surroundings; 4% gave a correct
response for all three parts of the question. The concrete-
context question yielded similar results. The percentage of
students �14%� who gave a correct response on part �c� of the
concrete-context question �see Fig. 2� was similar to the pro-
portion who gave a correct response on the corresponding
part �c� for the general-context question.24

The percentage of students �5%� who gave correct answers
for parts �a�, �b�, and �c� of the concrete-context question was
nearly identical to the proportion who gave correct answers
on all three parts of the general-context question. �We refer
to such simultaneous correct responses on parts �a�–�c� as
“all-correct” answers.� However, only 44% of those students

Fig. 4. Spontaneous-process question version B.

e-context questions. The results shown are mean values and 95% confidence
t question and three samples for the concrete-context question. See detailed

Preinstruction,
concrete context,

N=609
�three samples�

�%�

Entropy change of object is not determinable. 50�11
Entropy change of air in the room is not determinable. 49�3
Entropy of the object+air in the room increases. 14�9
Entropy of the universe increases. 15�18
t three parts correct, parts �a�–�c� 5�3
ncret
ontex

�a�
�b�
�c�
�d�
Firs
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who gave an all-correct answer to the concrete-context ques-
tion were also able to give all-correct answers to the general-
context question.25

Before instruction on the second law of thermodynamics,
a clear majority of students gave answers consistent with the
belief that entropy is conserved �see Table II�. Most students
responded that the entropy of the system plus the entropy of
the surroundings stays the same. Approximately 80% of the
students who gave the “total entropy remains the same” re-
sponse for the general-context question gave a similar re-
sponse on the concrete-context question. These consistent yet
incorrect responses suggest that most students had a well-
defined point of view regarding entropy conservation. This
impression is strengthened by further analysis of students’
responses as shown in the following.

An analysis of the answers of those students who gave the
“total entropy remains the same” responses shows that more
than 75% of these students fall into one of two categories on
both the general- and concrete-context questions. These cat-
egories are referred to as N-N-S and I-D-S, respectively, in
Table II. On the general-context question, category N-N-S
�26% of all responses� consists of students who state that the
change in entropy of the system is not determinable and the
change in entropy of the surroundings is not determinable,
but the entropy of the system plus that of the surroundings
remains the same. Most �65%� of the students in this cat-
egory cited some type of conservation rule in their reasoning.
Many are unclear about what exactly is being conserved, but
entropy, energy, and heat are the quantities most often men-
tioned. On the same question, students in category I-D-S
claim that the system’s entropy and the surroundings’ en-
tropy change in some specified manner, but they too assert
that total entropy change is zero. That is, they say that the
system’s entropy increases �decreases� and the surroundings’
entropy decreases �increases�, but the entropy of the system
plus that of the surroundings remains the same. On the
general-context question, the proportions of students in cat-
egories N-N-S and I-D-S were almost identical to each other.

As can be seen in Table II, the results for the concrete-
context question are very similar to those for the general-
context question. Most students stated that the entropy of the
object plus the entropy of the air in the room �the total en-

Table II. Percentage of responses corresponding to zero total entropy cha
instruction on entropy. Mean values and uncertainties are interpreted as in Ta
corresponds to students who answered “remain the same” to part �c� of ea
question; “object+air in the room” refers to the concrete-context question.
determinable” to parts �a� and �b�, but “remain the same” to part �c� of each
answered either increase or decrease to part �a�, but gave the opposite answe
part �c� of each question, respectively. The last row corresponds to students

Total entropy of �system+surroundings�/�object+air in the room�
remains the same.
N-N-S: entropy change of �system and surroundings�/�object and air�
not determinable, but total entropy remains the same.
I-D-S: entropy of �system/object� increases �decreases� and entropy of
�surroundings/air� decreases �increases�, but total entropy remains the
same.
Students with one of these notions of entropy conservation �sum of
N-N-S and I-D-S�.
tropy� would not change during a spontaneous process. More
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than half of all responses to the concrete-context question
included answers consistent with the total entropy being con-
served during a spontaneous process �see the last row in
Table II�.26 In contrast to the N-N-S / I-D-S parity observed
for the general-context question, category N-N-S was signifi-
cantly more popular than category I-D-S on the concrete-
context question. �Categories N-N-S and I-D-S were defined
similarly to those on the general-context question, except
that “object” and “air in room” were substituted for system
and surroundings, respectively.� The majority of students in
category I-D-S on either question claimed that the entropy of
the surroundings or the air in the room would increase rather
than decrease �58% on the general-context question and 71%
on the concrete-context question�.

B. Comparison of responses pre- and postinstruction

After all instruction on thermodynamics was complete in
Spring 2005, we administered free-response questions to stu-
dents during 1 week of laboratory classes. We compared stu-
dents’ responses on both the general- and concrete-context
questions to their preinstruction responses on the same ques-
tions for a matched sample of students consisting of the same
group both pre- and postinstruction. There was little differ-
ence in the proportion of correct responses before and after
instruction. For example, correct responses on the “total en-
tropy change” question �part �c�� increased from 25% to 36%
on the general-context question and from 20% to 23% on the
concrete-context question.27 The proportion of students with
all three parts correct increased from 5% to 8% on the gen-
eral context and from 7% to 13% on the concrete context.
�Detailed data and further discussion are given in Sec. VI.�

Responses related to “conservation” thinking on the
general- and concrete-context questions are shown in Table
III, where students’ pre- and postinstruction responses are
compared for the Spring 2005 semester. The sample is
matched. These students had completed our “entropy state-
function �‘two-processes’� tutorial” during recitation.28 This
tutorial was created for use in the Spring 2005 course and
was targeted at difficulties regarding the state-function prop-
erty of entropy and the principle of increasing entropy. It
guided students to evaluate and compare changes in P, V, T,

n the general- and concrete-context questions �see Figs. 1 and 2� before
�see detailed data on EPAPS �Ref. 23� Appendices III and IV�. The first row
uestion, respectively; “system+surroundings” refers to the general-context
second row �labeled N-N-S� corresponds to students who responded “not

ion, respectively. The third row �labeled I-D-S� corresponds to students who
crease or increase� to part �b�, and who also answered “remain the same” to
ther category, N-N-S or I-D-S.

einstruction, general context,
=1184 �four samples� �%�

Preinstruction, concrete context,
N=609 �three samples� �%�

67�8 71�7

26�12 38�8

25�10 22�6

51�7 60�13
nge o
ble I
ch q
The

quest
r �de
in ei

Pr
N

and S for an ideal gas undergoing either an isothermal ex-
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pansion or a free expansion. The use of this tutorial seemed
to help raise students’ correct-response rates on certain ques-
tions regarding entropy change.29

1. General-context question

On this question nearly half of the students continued to
state after instruction that the entropy of the system plus that
of the surroundings stays the same; more than 80% of this
group �39% of all students� fell into one of the two conser-
vation categories. However, there was a significant decrease
from pre- to postinstruction of those in category N-N-S.
Among students in category I-D-S, the claim that the sur-
roundings’ entropy would increase rather than decrease re-
tained the same majority support it had among the prein-
struction group.

Interview data were obtained from 18 student volunteers
who agreed to participate in one-on-one interviews after all
instruction on thermodynamics was complete. Our interview
data confirmed many of the ideas that we observed in the
free-response data. Seven of the 18 students provided some
type of conservation argument in their answer to the general-
context question, and none of them gave a correct response
for all three parts of this question. �S1 corresponds to Student
1, etc.�

�a� S1: “I think for the irreversible process… I actually
started with step �c�. I was thinking that the entropy of
the system plus surroundings equals zero, so it would
remain the same. I know these two would be opposite
of each other… I wasn’t 100% sure, but I was thinking
the system would decrease, and the surroundings
would increase.”

�b� S2: “…�c� it remains the same because the surround-
ings and system is like the universe and entropy of the
universe is constant.”

2. Concrete-context question

This question yielded postinstruction responses that were
almost unchanged in every category from their preinstruction
values �see Table III�. After instruction, responses that
claimed the total entropy would remain the same were given
more frequently on the concrete-context question �71%� than

Table III. Percentage of responses corresponding to zero total entropy chang
2005. The same group of students responded to the questions both pre- and

Total entropy of �system+surroundings�/�object+air in the room�
remains the same.
N-N-S: entropy change of �system and surroundings�/�object and air�
not determinable, but total entropy remains the same.
I-D-S: entropy of �system/object� increases �decreases� and entropy of
�surroundings/air� decreases �increases�, but total entropy remains the
same.
Students with one of these notions of entropy conservation �sum of
N-N-S and I-D-S�.

aSignificant difference �p�0.001� between pre- and postinstruction respons
bSignificant difference �p�0.05� between general-context and concrete-con
they were by the same students on the general-context ques-
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tion �48%�. Of those students that gave a “total entropy re-
mains the same” response to the concrete-context question,
61% gave a similar response on the general-context question.
Before instruction this overlap in similar responses between
the two contexts was 80%. This decreased consistency of
incorrect responses suggests that students’ thinking after in-
struction might have been less well characterized by a notion
of entropy conservation than had been the case before in-
struction.

On both questions a substantial fraction of all students still
fell into one of the two conservation categories of the “total
entropy remains the same” responses. After instruction, the
concrete-context question yielded a higher proportion of con-
servation arguments �59% of all students� than did the
general-context question �39% of all students, difference sig-
nificant at p=0.001�. The proportion of correct responses
�“total entropy increases” responses� after instruction in the
concrete context �23%� was lower than that in the general
context �36%�, a difference that is also statistically signifi-
cant �p=0.02�.30

3. Spontaneous-process question

Two versions of the spontaneous-process question were
administered after all instruction on thermodynamics in the
Fall 2004 and Spring 2005 semesters. After administering
version A �Fig. 3� in the Fall 2004 course, we conducted
seven interviews in which we asked this question in a free-
response format. We asked students to identify which of the
situations could actually occur in a real process. Four of the
seven students stated that the total entropy must either in-
crease or remain the same. We therefore recast the multiple-
choice options to reflect this change in version B �Fig. 4�,
which was given in the Spring 2005 course. Responses to
both versions are shown in Table IV.

It is unclear to what extent the students in the Fall 2004
course would have preferred an “increases or remains the
same” answer. In any case, in both courses over half of all
students gave a response after instruction that was consistent
with a belief that entropy would �or at least could� remain
unchanged during a spontaneous process.31 The proportion
of correct responses was not significantly different on the

he general-context �Fig. 1� and concrete-context �Fig. 2� questions in Spring
instruction �see Ref. 32�.

Spring 2005, matched sample, N=127 �%�

struction,
al context

Postinstruction,
general context

Preinstruction,
concrete context

Postinstruction,
concrete context

61a 48a,b 69 71b

34a 16a,b 39 36b

19 24 21 23

53a 39a,b 60 59b

general-context question, according to binomial proportions test.
esponses on postinstruction questions.
e on t
post

Prein
gener

es to
text r
two versions of the question.
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V. STUDENT REASONING REGARDING SYSTEM
AND SURROUNDINGS

Before instruction 40–50% of all students correctly stated
that the changes in entropy of the system/object and of the
surroundings/air in the room were not determinable with the
information given �see Table V�. However, if we look at the
preinstruction responses in which students made a specific
directional choice �that is, either increases or decreases� we
find an asymmetry: in the general context, the students’ pre-
ferred answer was that the entropy of the system would in-
crease �26%� rather than decrease �19%� or remain the same
�10%�; the difference between the “increases” and “de-
creases” responses is significant over our four semesters of
data �p�0.05 using a one-tailed paired two-sample t-test�.
More students expected the entropy of the surroundings to
increase rather than decrease or remain the same �p=0.001�.
Similarly, on the preinstruction concrete-context question,
students have a significant preference regarding the entropy
of the air in the room �p�0.001�; the responses that the
entropy of the air would increase �27%� were nearly triple
the responses that stated that the entropy of the air would
decrease �9%�. On the same question we did not see the same
preferential response regarding changes in the entropy of the
object �17% increases, 19% decreases�. At the outset of our
study we expected that students would disproportionately ex-
pect entropy to increase rather than decrease, recalling the

Table IV. Percentage of postinstruction responses for each option on versio
option of total entropy either increasing or remaining the same.� Response
options in the original question.

�A� Total entropy remains the same.
�B� Total entropy increases and system entropy increases.
�C� Total entropy decreases and system entropy increases.
Answers B and Ca

Total entropy increases and system entropy can increase or decrease
�correct�.
Total entropy increases or remains the same.b

aVersion A only.
bVersion B only.

Table V. Percentage of various preinstruction responses related to system a
confidence interval based on response rates and standard deviations obser
concrete-context question �see EPAPS �Ref. 23� Appendices I and II�.

Preinstruction
N=1184 �

Entropy of… Sys
Increases 26
Decreases 19
Remains the same 10
Is not determinable �correct� 42

Entropy of… Surrou
Increases 28
Decreases 14
Remains the same 11
Is not determinable �correct� 42
912 Am. J. Phys., Vol. 77, No. 10, October 2009
often-heard phrase “entropy never decreases.” Our findings
show that although this expectation may hold in some cir-
cumstances, there are contexts in which it does not.

The matched-data sample from the Spring 2005 course
shows that the responses before and after instruction are
mostly consistent with each other �see Table VI�. In most
cases students have a preference for the “entropy increases”
responses �compared to “decreases” or “remains the same”�
before and after instruction32 and show a statistically signifi-
cant preference for stating that entropy of the system, the
surroundings, and the air in the room increases. However, for
the object in the concrete-context question the matched
sample shows no significant difference between the propor-
tions of “increases” and “decreases” responses, either before
or after instruction. This result is consistent with our finding
from the larger three-semester preinstruction data sample, as
discussed at the beginning of this section and as reflected in
Table V.

Interviews were conducted throughout our study; 18 were
done after all instruction was complete in the Spring of 2005.
As noted in Sec. IV B, seven of the 18 students had offered
conservation arguments regarding total entropy. By contrast,
seven other students in this same group of 18 argued that
system entropy would have to increase; however, this latter
group of seven varied in the way they treated system and
surroundings. Although the students in this subsample said

and B of the spontaneous-process question. �Only version B includes the
riptions in the first column are characterizations of the numerical response

Fall 2004, postinstruction
�version A�, N=539 �%�

Spring 2005, postinstruction
�version B�, N=341 �%�

54 36
5 12
7 2
4 ¯

30 27
¯ 23

rroundings as a proportion of all responses. Uncertainties reflect the 95%
n four courses for the general-context question, and three courses for the

eral context,
samples�

Preinstruction, concrete context,
N=609 �three samples�

Object…
17�2%
19�3%
6�7%
50�5%

gs… Air in room…
27�2%
9�1%
6�3%
49�1%
ns A
desc
nd su
ved i

, gen
four

tem…
�3%
�4%
�4%
�6%

ndin
�2%
�2%
�1%
�4%
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that the system entropy must increase, their answers for the
entropy of the surroundings varied among “not determin-
able” �4�, “remain the same” �2�, and “increase” �1�. Two
typical responses categorized as “not determinable,” which
demonstrate the asymmetry in student thinking regarding
system and surroundings, are given here. �I corresponds to
Interviewer.�

�a� S3: “Entropy of the system will increase because it’s
irreversible and you have to have an increase in en-
tropy if it’s irreversible… second one �the entropy of
the surroundings� I wasn’t sure of… entropy must ei-
ther stay the same or increase… because you can’t
achieve order from disorder, but it can go the other way
around.”

�b� S4: “�For surroundings� I said remain equal or increase,
and that depends on whether the heat is transferred to
the system.”
I: Could it decrease?
S4: “It �the surroundings� would always remain the
same or increase. �Part c� remain�s� the same because
the universe can’t possibly become more ordered… it’s
one of the laws of thermodynamics.”

Approximately 15% of the explanations on part �d� of the
concrete-context question included a claim that the entropy
of the universe is unaffected by the process, or that the uni-
verse is isolated from the process; some argued that the en-
tropy of the universe would be unaffected “because it’s too
big.” We developed a “metal in the ocean” question to pro-
vide clearer evidence of student thinking on this issue. The
problem describes a 1 cm3 piece of hot metal thrown into an
ocean. The hot metal was initially at a higher temperature
than the ocean. The students are asked to consider the en-
tropy change of the metal, the ocean, and the ocean plus the
metal after several hours have elapsed.

The question was first developed in Spring 2006 and was
used during 20 postinstruction interviews during that semes-
ter. The most surprising finding is that three out of the 20
students claimed that although the metal would decrease in
entropy, the entropy of the ocean would remain the same.

Table VI. Percentage of various pre- and postinstruction responses related to
The same group of students responded both preinstruction and postinstructi

Preinstruction,
general context

Entropy of… System…
Increases 28%
Decreases 14%
Remains the same 3%b

Is not determinable �correct� 51%b

Entropy of… Surroundings
Increases 29%
Decreases 10%
Remains the same 8%
Is not determinable �correct� 47%

aSignificant difference �p�0.05� between concrete-context and general-conte
bSignificant difference �p�0.05� between pre- and postinstruction response
Their explanation hinged on some type of ocean-size argu-
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ment and led to their conclusion that the total entropy of
metal plus ocean would actually decrease. Excerpts from the
interview with one of these three students are given in the
following:

S5: “…entropy of the metal is going to decrease
because it’s losing heat, once it reaches equilib-
rium it will have lost entropy because it’s also lost
heat; the entropy of the surroundings I think means
the ocean, then the ocean remains the same, it’s a
law or it’s a frame of reference… a very small
change in entropy into a very large surroundings
isn’t going to result in any measurable change in
entropy in the surroundings because of the size dif-
ference between the two… It �the change in en-
tropy of the metal piece plus the surroundings�
would decrease because the entropy in the ocean is
going to remain the same but the entropy of the
very hot piece of metal will decrease drastically to
come in equilibrium with the ocean…In the object
in the room the object was large enough to create a
change in entropy in the room; then there would be
enough to determine if it’s the same. In this prob-
lem there wasn’t a noticeable change in entropy of
the ocean but there was in the metal.”

Our study did not assess the full extent of this error among
our sample.

We documented specific student difficulties regarding the
entropy changes in a spontaneous process. Before and after
instruction most students failed to recognize the correct an-
swers on questions regarding the change in entropy during a
naturally occurring process. The most common responses
suggest belief in a conservation principle that requires the
total entropy to remain the same. Among those students who
assert a direction for entropy change even when none can be
specified, a significantly higher proportion of students claim
that entropy will increase rather than decrease for both the

em and surroundings, general- and concrete-context questions, Spring 2005.
e Ref. 32�.

Spring 2005, matched sample, N=127

tinstruction,
eral context

Preinstruction,
concrete context

Postinstruction,
concrete context

Object…
35%a 20% 17%a

20% 17% 23%
9%a,b 2% 3%a

35%a,b 55% 57%a

Air in room…
31% 25% 29%
17%a 10% 6%a

10% 6% 7%
39%a 51% 57%a

sponses on postinstruction questions, according to binomial proportions test.
general-context question.
syst
on �se

Pos
gen

…

xt re
s on
system and surroundings. For the most part we found that
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students’ responses to questions posed both in a general con-
text and in a concrete context were very similar in the two
contexts.33

VI. CURRICULUM DEVELOPMENT

A. Entropy spontaneous-process “two-blocks” tutorial

Based on our finding that many students overgeneralized
the notion of conservation to questions regarding total en-
tropy change during real processes, we developed curricular
materials to help students address this difficulty. Our strategy
was to guide students to consider a physical situation that
allows them to affirm their understanding of energy
conservation34 and challenges the notion that entropy is con-
served in the same process. It was also important to choose a
system and process in which the outcome of entropy increase
is easy to deduce.

We developed a tutorial based on a set of two large, insu-
lated metal blocks connected by a thin insulated metal rod of
negligible heat capacity; we refer to this as our “entropy
spontaneous-process �two-blocks� tutorial.”35 �This replaced
the entropy state-function �two-processes� tutorial.� The two
blocks are initially at different temperatures, and students are
asked to consider net changes in the energy and entropy of
the two blocks during the heat-transfer process. The dimen-
sions of the blocks and rod are specified, and the temperature
changes of the blocks are shown to be so small as to be
negligible. The relation �S��initial state

final state �Qrev /T simplifies for
the blocks �which act as thermal reservoirs� to �S=Q /T,
where Q is the heat transfer to the block and T is the tem-
perature of the block. �Heat transfers to the thin rod are
stated to be negligible.�

Students are asked questions at the beginning of the tuto-
rial on the change in entropy of the low-temperature block
and the net change in entropy of both blocks together. They
are asked whether there are any conserved quantities for this
process and whether energy and/or entropy are conserved.
Because most students are likely to apply an inappropriate
conservation argument to questions of this type, we wanted
to elicit these difficulties at the beginning so that students
could address and resolve them over the course of the
tutorial.36

Students are asked to consider the magnitudes and signs of
the heat transfers to the two blocks and are led to recognize
that these heat transfers are equal in magnitude and opposite
in sign and that the net energy change is zero. Students are
then asked to consider the magnitudes and signs for the en-

Table VII. Percentage of correct responses on the general-context question,
entropy state-function �two-processes� tutorial, and the Spring 2006 class us

Spri

Preinstructio

�a� Entropy change of system not determinable 51
�b� Entropy change of surroundings not determinable 47
�c� Entropy of �system+surroundings� increases 25
All correct, �a�–�c� 5

aSignificant difference �p�0.0001� between Spring 2005 and Spring 2006 o
between 2005 and 2006 on preinstruction responses are not significant.�
tropy changes of each block and the net change in entropy.
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Students are guided to realize that the entropy increase of the
cooler block is larger in magnitude than the entropy decrease
of the warmer block, and so the net change in entropy is
positive.

The tutorial continues by guiding students to explore the
relations among the system, surroundings, and the universe.
Our goal is to get students to realize that regardless of how
the system and surroundings are defined �for example, no
matter which block is taken to be the system and which the
surroundings�, the total entropy of the system plus the sur-
roundings will increase during this process. Additional sec-
tions in the tutorial guide students to consider the conse-
quences of negative entropy changes, as well as the limiting
case of zero entropy change for an ideal reversible process as
the temperatures of the two blocks approach each other arbi-
trarily closely.

In the Spring of 2006 we administered the two-blocks tu-
torial to all students �N�200� who attended recitation during
the week in which entropy was covered in class. Postinstruc-
tion testing took place on the midterm exam, which covered
all thermodynamics topics �using multiple-choice questions�,
and also during 1 week of laboratories conducted 2 weeks
after the midterm was complete �using free-response ques-
tions�. As seen in Tables VII �general-context question� and
VIII �concrete-context question�, student performance gains
�pretest to post-test� on both questions are much better in the
Spring 2006 course compared to the matched sample in the
Spring 2005 course.37 There was also a dramatic improve-
ment in the proportion of students answering all three parts
correctly �55% and 53%, respectively, on the general- and
concrete-context questions, postinstruction, compared to
only 6% preinstruction�. After tutorial instruction a much
higher proportion of students who were able to answer �a�,
�b�, and �c� correctly on the concrete-context question also
answered all three parts correctly on the general-context
question. This overlap proportion rose from 45% to 90%
�pre- to postinstruction�, indicating far greater consistency in
correct-answer responses after use of the two-blocks
tutorial.38 �In 2005, by contrast, no shift in the overlap pro-
portion was observed even after instruction had taken place.�
Those students who gave incorrect responses did not do so as
consistently as before instruction, and the overlap proportion
for incorrect answers to part �c� dropped from 83% to 69%.

A third version of the spontaneous-process multiple-
choice question was designed that was almost identical to
version B, which had been used in Spring 2005. The propor-

ed samples, Spring 2005 and Spring 2006. The Spring 2005 class used the
e entropy spontaneous-process �two-blocks� tutorial.

05, N=127 �%� Spring 2006, N=191 �%�

Postinstruction with
two-processes tutorial Preinstruction

Postinstruction with
two-blocks tutorial

35a 42 74a

39a 42 75a

36a 21 68a

8a 6 55a

stinstruction responses, according to binomial proportions test. �Differences
match
ed th

ng 20

n

n po
tion of correct responses �61%� to this question was signifi-
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prein
cantly higher after instruction with the two-blocks tutorial
than it had been without its use in 2004 �30% correct� and
2005 �27% correct�.

There were other substantial changes in the content of in-
struction during the Spring 2006 course compared to the
Spring 2005 course. The same instructor taught both courses
and the form of instruction was consistent, but the instructor
drastically modified his lectures on entropy. He modeled
some of the same steps that were used in the two-blocks
tutorial and incorporated a number of related questions,
which he posed to the class using clickers.39

We also administered the two-blocks tutorial in a
sophomore-level physics course at the UW. Before instruc-
tion the UW students performed at a level similar to that of
the ISU students, although a higher proportion of UW stu-
dents gave all-correct answers on the general- and concrete-
context questions �13% and 19%, respectively; N=32� than
did ISU students in the two matched samples ��6%�. The
students’ postinstruction performance was significantly better
than that of students in the Spring 2005 ISU course, with a
higher proportion of students giving all-correct answers for
the general-context �63%� and concrete-context �69%� ques-
tions. These high postinstruction proportions are consistent
with postinstruction performance in the Spring 2006 course
at ISU.40

B. Student performance on “universe equals system
plus surroundings” concept

We assessed students’ thinking on the commonly used ter-
minology in which an arbitrarily defined system and that
system’s surroundings are taken together to define the uni-
verse. Our concrete-context question shed light on their
thinking by asking for the change in entropy inside the insu-
lated room and the change in entropy of the universe. Both
before and after the Spring 2005 course, students’ responses
on these two questions were consistent with each other. After
instruction with the two-blocks tutorial in the 2006 course,
the proportion of students who claimed incorrectly that the
entropy of the universe would stay the same �53%� was far
higher than those who gave the corresponding answer on part
�c� of the concrete-context question �24%�.41 Student expla-
nations that justified the “entropy of the universe remains the
same” response often described the universe as being iso-
lated from the room, which is contrary to the meaning em-
ployed in the tutorial. Despite the substantial improvement in

Table VIII. Percentage of correct responses on the concrete-context question
two-processes tutorial, and the Spring 2006 class used the two-blocks tutori

Sp

Preinstruct

�a� Entropy change of object not determinable. 55
�b� Entropy change of air in the room not determinable. 51
�c� Entropy of �object+air in the room� increases. 20
�d� Entropy of universe increases. 26c

�a�, �b�, and �c� correct 7

aSignificant difference �p�0.001� between Spring 2005 and Spring 2006 on
bSignificant difference �p�0.0001� between Spring 2005 and Spring 2006 o
cSignificant difference �p�0.05� between Spring 2005 and Spring 2006 on
overall student understanding �see Tables VII and VIII and
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discussion in Sec. VI A�, this use of the two-blocks tutorial
increased student difficulties in consistently interpreting the
meaning of universe in the context used here. This shortcom-
ing will need to be addressed in future versions of this
tutorial.

VII. CONCLUSION

We conducted an extensive analysis of student thinking on
certain aspects of the principle of increasing entropy, includ-
ing those that relate to the meaning of system and surround-
ings. Analysis of data from four semesters of classes demon-
strated that before instruction, students have well-defined
and consistent lines of thinking and reasoning. These lines
include the popular notion that total entropy remains un-
changed during a real process, implicitly based on an as-
sumption that entropy is a conserved quantity. These ideas
can lead to difficulties in understanding the role of entropy in
the second law of thermodynamics.

Before instruction fewer than 10% of the students were
able to correctly respond to questions on entropy changes,
and there was very little dependence on whether these ques-
tions were posed in a general or a concrete context.33 Almost
two-thirds of the students showed evidence of conservation-
type reasoning regarding entropy.

Many students showed a strong tendency to claim, even
when lacking the required information, that the entropy
change of the system or surroundings would have a specific
sign; most of this group asserted that entropy would increase.
It appeared as if many students were attempting to reconcile
two popular ideas: the common perception that “entropy al-
ways increases” and a belief that the total entropy must be
conserved.

Results from matched samples of students assessed by
pre- and postinstruction testing showed that some of these
difficulties persist despite instructor awareness of the diffi-
culties and deliberate attempts to overcome them. We subse-
quently developed a research-based tutorial that explicitly
addressed some of these difficulties. Early indications are
that instruction using this tutorial is effective in improving
students’ performance on questions regarding the principle of
entropy increase in spontaneous processes, at least in pro-

42

hed samples, Spring 2005 and Spring 2006. The Spring 2005 class used the

2005, N=127 �%� Spring 2006, N=191 �%�

Postinstruction with
two-processes tutorial Preinstruction

Postinstruction with
two-blocks tutorial

57a 53 73a

57a 52 73a

23b 16 69b

26a 15c 44a

13b 6 53b

tinstruction responses, according to binomial proportions test.
stinstruction responses.
struction responses.
, matc
al.

ring
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cesses that involve energy transfer by heating.
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Appendix I. Itemized response data, general-context question, pre-instruction, all

semesters

Fall 2004

Pre-Instruction

Spring 2005

Pre-Instruction

Fall 2005

Pre-Instruction

Spring 2006

Pre-Instruction

Pre-Instruction

General

Context

Cumulative

Results

N = 406 N = 171 N = 360 N = 247 N = 1184

Entropy of system…

increases 30% 26% 24% 24% 26 ± 4%

decreases 19% 14% 25% 18% 19 ± 7%

remains the same 9% 5% 13% 13% 10 ± 6%

 is not determinable

[correct]
39% 50% 35% 43% 42 ± 10%

Entropy of

surroundings…

increases 26% 26% 31% 28% 28 ± 4%

decreases 16% 11% 14% 14% 14 ± 4%

remains the same 12% 9% 11% 11% 11 ± 2%

 is not determinable

[correct]
42% 47% 38% 42% 42 ± 6%

Entropy of system +

surroundings…

increases [correct] 19% 23% 16% 19% 19 ± 5%

decreases 2% 1% 3% 2% 2 ± 1%

remains the same 67% 60% 69% 71% 67 ± 8%

is not determinable 8% 12% 7% 4% 8 ± 5%

All Correct 5% 4% 4% 5% 4 ± 1%



Appendix II. Itemized response data, concrete-context question, pre-instruction, all

semesters

Spring 2005

Pre-Instruction

Concrete

Context

Fall 2005

Pre-Instruction

Concrete

Context

Spring 2006

Pre-Instruction

Concrete

Context

Pre-Instruction

Concrete

Context

Cumulative

Results

N = 155 N = 207 N = 237 N = 609

a. Entropy of object…

increases 19% 15% 17% 17 ± 5%

decreases 16% 20% 21% 19 ± 6%

remains the same 3% 14% 3% 6 ± 16%

 is not determinable [correct] 54% 45% 52% 50 ± 11%

b. Entropy of air in the

room…

increases 25% 27% 28% 27 ± 3%

decreases 8% 10% 10% 9 ± 2%

remains the same 7% 9% 3% 6 ± 8%

 is not determinable [correct] 48% 48% 50% 49 ± 3%

c. Entropy of object + air in

the room…

increases [correct] 17% 11% 15% 14 ± 9%

decreases 1% 5% 4% 3 ± 6%

remains the same 68% 71% 74% 71 ± 7%

is not determinable 5% 4% 3% 4 ± 2%

d. Entropy of universe…

increases [correct] 23% 9% 14% 15 ± 18%

decreases 1% 2% 0% 1 ± 2%

remains the same 61% 73% 72% 69 ± 17%

is not determinable 6% 7% 8% 7 ± 3%

a, b, and c correct 6% 3% 5% 5 ± 3%



Appendix III. Responses related to overall entropy change, general-context question, pre-

instruction, all semesters

Fall 2004

Pre-Instruction

Spring 2005

Pre-Instruction

Fall 2005

Pre-Instruction

Spring 2006

Pre-Instruction

Pre-Instruction

General

Context

Cumulative

Results

N = 406 N = 171 N = 360 N = 247 N = 1184

Total entropy [of

(system +

surroundings / (object

+ air in the room)]

remains the same

67% 60% 69% 71% 67 ± 8%

A. Entropy of  (system

and surroundings)/

(object and air) not

determinable, but total

entropy remains the

same

27% 33% 16% 29% 26 ± 12%

B. Entropy of

(system/object)

increases [decreases]

and entropy of

(surroundings/air)

decreases [increases],

but total entropy

remains the same

30% 16% 31% 25% 25 ± 10%

C. Students with one of

these notions of entropy

conservation (sum of A

and B above)

57% 49% 46% 53% 51 ± 7%



Appendix IV. Responses related to overall entropy change, concrete-context question,

pre-instruction, all semesters

Spring 2005

Pre-Instruction

Fall 2005

Pre-Instruction

Spring 2006

Pre-Instruction

Pre-Instruction

Concrete

Context

 Cumulative Results

N = 155 N = 207 N = 237 N = 609

Total entropy [of

(system +

surroundings)/ (object

+ air in the room)]

remains the same

68% 71% 74% 71 ± 7%

A. Entropy of  (system

and surroundings)/

(object and air) not

determinable, but total

entropy remains the

same

37% 35% 41% 38 ± 8%

B. Entropy of

(system/object)

increases [decreases]

and entropy of

(surroundings/air)

decreases [increases],

but total entropy

remains the same

19% 22% 24% 22 ± 6%

C. Students with one of

these notions of entropy

conservation (sum of A

and B above)

56% 57% 65% 60 ± 13%



Appendix V. Itemized response data, general- and concrete-context questions, pre- and

post-instruction, spring 2005 matched sample

Spring 2005

Matched Sample

N = 127

Pre-Instruction

General Context

Post-Instruction

General Context

Pre-Instruction

Concrete Context

Post-Instruction

Concrete Context

a. Entropy of… System… Object…

increases 28% 35% 20% 17%

decreases 14% 20% 17% 23%

remains the same 3% 9% 2% 3%

is not determinable

[correct]
51% 35% 56% 57%

b. Entropy of… Surroundings… Air in the Room…

increases 29% 31% 25% 29%

decreases 10% 17% 10% 6%

remains the same 8% 10% 6% 7%

is not determinable

[correct]
47% 39% 51% 57%

c. Entropy of… System + Surroundings… Object + Air in the Room…

increases [correct] 25% 36% 20% 23%

decreases 1% 3% 0% 0%

remains the same 61% 48% 69% 71%

not determinable 10% 12% 5% 6%

d. Entropy of… -- Universe…

increases [correct] -- -- 26% 27%

decreases -- -- 1% 0%

remains the same -- -- 62% 65%

is not determinable -- -- 5% 5%

a, b, and c correct 5% 8% 7% 13%



Appendix VI. Itemized response data, general- and concrete-context questions, pre- and

post-instruction, spring 2006 matched sample

Spring 2006

Matched Sample

N = 191

Pre-Instruction

General Context

Post-Instruction

General Context

Pre-Instruction

Concrete Context

Post-Instruction

Concrete Context

a. Entropy of… System… Object…

increases 25% 13% 16% 15%

decreases 18% 12% 23% 12%

remains the same 14% 2% 3% 1%

is not determinable

[correct]
42% 74% 53% 73%

b. Entropy of… Surroundings… Air in the Room…

increases 28% 17% 29% 16%

decreases 14% 6% 8% 8%

remains the same 12% 3% 4% 2%

is not determinable

[correct]
42% 75% 52% 73%

c. Entropy of… System + Surroundings… Object + Air in the Room…

increases [correct] 21% 68% 16% 69%

decreases 2% 2% 4% 2%

remains the same 71% 21% 73% 24%

is not determinable 4% 8% 3% 5%

d. Entropy of… -- Universe…

increases [correct] -- -- 15% 44%

decreases -- -- 1% 1%

remains the same -- -- 73% 54%

is not determinable -- -- 8% 1%

a, b, and c correct 6% 55% 6% 53%



Appendix VII. Correct responses, pre- and post-instruction, general-context question,

ISU 2005 and UW 2007

Iowa State University

Introductory Course

University of Washington

Sophomore Course

Pre-Instruction

Post-Instruction

with Two-

Processes Tutorial

Pre-Instruction
Post-Instruction with

Two-Blocks Tutorial

Spring 2005

Matched Sample

N = 127

Winter 2007

Matched Sample

N = 32

a. Entropy change of system not

determinable
51% 35% 50% 84%

b. Entropy change of surroundings not

determinable
47% 39% 53% 84%

c. Entropy of system + surroundings

increases
25% 36% 34% 72%

All Correct 5% 8% 13% 63%



Appendix VIII. Correct responses, pre- and post-instruction, concrete-context question,

ISU 2005 and UW 2007

Iowa State University

Introductory Course

University of Washington

Sophomore Course

Pre-Instruction

Post-Instruction

with Two-

Processes Tutorial

Pre-Instruction
Post-Instruction with

Two-Blocks Tutorial

Spring 2005

Matched Sample

N = 127

Winter 2007

Matched Sample

N = 32

a. Entropy change of object not

determinable
55% 57% 47% 88%

b. Entropy change of air in the room

not determinable
51% 57% 47% 88%

c. Entropy of object + air in the room

increases
20% 23% 34% 78%

a, b, and c correct 7% 13% 19% 69%



Appendix IX. Entropy State-Function [“Two-Processes”] Tutorial

A system consisting of one mole of a monatomic ideal gas goes through two different processes as

shown below.  The initial values of volume (Vi), pressure (Pi), and temperature (Ti) are the same for each

process.  Also note that the final volume (Vf) is the same for each process.

 Process #1 occurs very slowly so that it is always at the same temperature as the surroundings, and

the pressure applied to the piston may vary.  Note that the piston for Process #1 slides without friction.

(Processes #1 is reversible.)

The system is thermally insulated from its surroundings in Process #2. In Process #2, the gas is

initially trapped in one half of the container by a thin partition; the other half of the container contains

vacuum. The partition is suddenly removed, and the gas quickly fills the rest of the volume.

                       #1: Reversible Isothermal Expansion                          #2: Free Expansion into a Vacuum

1.1 Consider Process #1: Explain the meaning of “isothermal.”

1.2 During this process, state whether the following quantities increase, decrease, or remain the same:

a. temperature

b. volume

c. pressure

1.3 For an ideal gas, internal [thermal] energy is directly dependent on temperature by the equation Eth =

3/2 nRT. Does the internal energy of the system in Process #1 (the system consists of the gas only)

increase, decrease, or remain the same? Explain.

1.4 In Process #1, the gas molecules exert a force on the piston by colliding with it while the piston is

moving.  Does this mean work done by the system on the surroundings is positive, negative, or zero?

1.5 According to the first law of thermodynamics, is the heat transfer to the system from the

surroundings in Process #1 positive, negative, or zero? Explain.

Check that you and your group members have the same answers and consistent explanations for the

questions above. If not, reconcile the responses and enter the group explanation.

 

 

Initial

State:

Final

State:
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                       #1: Reversible Isothermal Expansion                          #2: Free Expansion into a Vacuum

2.1 Consider Process #2: According to the information, the system in Process #2 is thermally insulated.

Explain what “thermally insulated” means.

2.2 In Process #2, is the heat transfer to the system from the surroundings positive, negative, or zero?

2.3 In Process #2, the gas is expanding but there is nothing for the molecules to collide against therefore

there is no force exerted during the expansion.  Is the work done by the system on the surroundings

positive, negative, or zero?  Explain.

2.4 According to the first law of thermodynamics, does the internal energy of the system in Process #2

increase, decrease, or remain the same? Explain.

2.5 During this process, state whether the following quantities increase, decrease, or remain the same:

a. temperature

b. volume

c. pressure

2.6 Is the final volume of the system in Process #2 greater than, less than, or equal to the final volume of

the system in Process #1? Answer the same question for the initial volumes.  HINT: Check the

information at the top of page 1.

2.7 Is the final temperature of the system in Process #2 greater than, less than or equal to the final

temperature of the system in Process #1?  Explain.

2.8 Is the final pressure of the system in Process #2 greater than, less than or equal to the final pressure

of the system in Process #1?  Explain.

Check that you and your group members have the same answers and consistent explanations

 for the questions above. If not, reconcile the responses and enter the group explanation.

 

 

Initial

State:

Final

State:
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3. Draw points to represent the initial and final states of the two processes on the same P-V diagram;

label each state 1i, 1f, 2i, and 2f, respectively. (e.g. 1i is the initial state of Process #1, etc.)

Note:  Check that the final volumes of both processes are the same.

Is your diagram consistent with your answer to Questions 2.6, 2.7, and 2.8 on the previous page?

4. Which process has the greatest magnitude of heat transfer to the system? If the two are equal, indicate

with an “=” symbol.

5. Is S1(initial state), the initial entropy of the system in Process #1, greater than, equal to, or less than

S2(initial state), the initial entropy of the system in Process #2?

The change in the entropy of a system that begins in initial state i and ends in final state f can be expressed

as
T

Q
S reversible= . Here, Qreversible represents the heat transfer to the system only during a process from i to f

that is reversible; the T in this equation is related to the average temperature of the system during the process.

6. Does the entropy of the system increase, decrease, or remain the same for Process #1?

Is your answer to Question #6 consistent with 
T

Q
S reversible= ?  Explain.

Do NOT continue until you check your answers with the recitation instructor.

V

P
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7. Consider S2 and S1, the changes in the entropy of the system during Process #2 and Process #1,

respectively; S  S(final state) – S(initial state). Three students are discussing whether S2 is greater than,

equal to, or less than S1.  Read through the discussion and follow the directions below.

Student A:  “I think that the entropy for Process #2 is going to stay the same.  The system is

thermally insulated so if there is no heat transfer to the system from the surroundings there is

no change in the entropy of the system because 
T

Q
S reversible= .”

Student B:  “That makes sense from the S equation we were given, but that is only correct for

a reversible process.  We must remember that entropy is a state function.  Process #2 has the

exact same final pressure, volume, and temperature as Process #1, so I think that the entropy in

Process #2 will increase the same amount that entropy in Process #1 increases.”

Student C:  “I think you are on the right track, but Process #2 can’t go back to its initial state

like Process #1; that means that it’s not reversible.  So even though it has the same final state

as Process #1, I think the change in entropy for Process #2 will be different from that in

Process #1.”

Student B responds to Student C:  “I agree that #2 is irreversible, but we already determined

that the initial entropy for both processes was the same in Question #5.  The change in entropy
is S  S(final state) – S(initial state), so if the initial AND final states of Process #2 and Process #1

are the same the change in entropy in Process #2 has to be the same as Process #1 regardless

of whether it’s reversible or irreversible.”

Re-read each student’s statement and comment on the parts with which you agree, and identify the

statements that you believe are incorrect.  Explain your reasoning.

Discuss your reasoning and that of your group with the recitation instructor before continuing.

Continue to Page 5
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8. Is Ssystem 1, the change in entropy of the system for Process #1, greater than, equal to, or less than

Ssystem 2, the change in entropy of the system for Process #2? Explain.

9. Is Ssurroudings 1, the change in entropy of the surroundings for Process #1, greater than, equal to, or

less than Ssurroundings 2, the change in entropy of the surroundings for Process #2? Explain. Hint:

Qsystem = – Qsurroundings

10. Using your answers from Questions 8 and 9, is the magnitude of | Ssystem 1| greater than, equal to, or

less than the magnitude of | Ssurroudings 1|?  Hint: Qsystem = – Qsurroundings & 
T

Q
S reversible=

11. Is Suniverse 1, the change in entropy of the universe for Process #1, greater than, equal to, or less than

Suniverse 2, the change in entropy of the universe for Process #2? Explain your answers. (Note that

Suniverse  Ssystem + Ssurroundings)

12. Use the results from the worksheet to fill out the Table below

Process #1 Process #2

Reversible or
Irreversible?

Qto system > 0,
Qto system < 0, or
Qto system = 0?

Ssystem > 0,

Ssystem < 0, or

Ssystem = 0?

Qto surr > 0,
Qto surr < 0, or
Qto surr = 0?

Ssurr > 0,

Ssurr < 0, or

Ssurr = 0?

Suniverse > 0,

Suniverse < 0, or

Suniverse = 0?

In any real (or irreversible) process, does the entropy of the universe increase, decrease, remain the same, or

is this not determinable without additional information?



Appendix X. Entropy Spontaneous-Process [“Two-Blocks”] Tutorial

 I. Energy Reservoir

A metal cube, one meter on each side, is enclosed in a thermally insulating jacket. Another metal cube of the same

size is enclosed in its own insulating jacket. The temperature of this second cube is higher than the temperature of

the first cube. We’ll refer to the high-temperature cube as “H,” and the other as “L,” and their temperatures as TH

and TL, respectively. The only connection between the cubes is through a narrow metal rod that has a very small

mass. Heat transfer to or from the cubes can take place only through this narrow metal rod. We will assume that

when heat transfer does take place, the rate of energy change is so small that neither of the metal cubes undergoes

any measurable change in temperature.

Is it reasonable to assume the temperature of the two cubes will remain constant?

A quantitative argument: Suppose we have two different copper blocks each with volume of 1 m
3
;

assume that the temperature difference between the blocks is 50 K and that they are connected by a

copper rod 20 cm long, with diameter 1 cm.  There would be 8 joules of energy transferred each

second through heat conduction. However, given the mass of the blocks (each weighs roughly 10 tons),

it would take almost 12 days before the temperature of the blocks changed even by one kelvin.

Definition: The term used for a system so massive that it does not change temperature even when heat

transfer takes place is “energy reservoir” or “thermal reservoir.”

Does the high-temperature cube fit the definition of an energy reservoir?  Why or why not?

Does the low-temperature cube fit the definition? Why or why not?

The following questions refer to the process that takes place when the cubes are connected by the metal

rod; consider a process with duration of one minute.

II. What do you expect will happen? (These questions are meant to get you thinking about the

problem, don’t be concerned if you are unsure of your answers.)

a) Consider the system consisting only of the low-temperature cube. While the two cubes are

connected with the rod, does the entropy of this system increase, decrease, or remain the same?

b) During the same process, does the total entropy of the high- and low-temperature cubes together

increase, decrease, or remain the same?  Explain your reasoning.

c) State whether the following quantities are conserved during this process: (i) energy; (ii) entropy.

 On the diagram above, draw an arrow to indicate the direction of positive heat transfer.

Insulated

cube at TH

Insulated

cube at TL
Insulated

metal rod

Insulated

cube at TH

Insulated

cube at TL

Insulated

metal rod

3-D side view 2-D cutout view
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III. Heat transfer and entropy

1. During a process with duration of one minute, consider QH and QL, the heat transfers to the high-

temperature and low-temperature cubes, respectively.

a) Is QH, the heat transfer to the high-temperature cube, positive, negative, or zero?

b) Is QL, the heat transfer to the low-temperature cube, positive, negative, or zero?

c) Compare the magnitudes (absolute values) of QH and QL; is one larger than the other? If so,

which one?

d) Is the sum [QH + QL] positive, negative, or zero?

e) For this process, is energy a conserved quantity? Explain.

The entropy change in a reversible process is given by 
T

dQ
S reversible

final

initial

= .  For any process involving heat

transfer to an energy reservoir at constant temperature T, this expression can be rewritten as Sreservoir =
Qto reservoir

Treservoir
,

where Qto reservoir is the heat transfer to the reservoir during the process and Treservoir is the temperature of the reservoir.

2. During the heat transfer process, consider SH and SL, the change in entropy of the high-temperature

cube and low-temperature cube, respectively.

a) Is SH, the change in entropy of the high-temperature cube, positive, negative, or zero?

Does this mean the entropy of the high-temperature cube increases, decreases, or remains the same?

b) Is SL, the change in entropy of the low-temperature cube, positive, negative, or zero?

Does this mean the entropy of the low-temperature cube increases, decreases, or remains the same?

c) Consider the magnitudes (absolute values) of SH and SL. Is the absolute value of one larger

than the other? If so, which one? Explain.

d) If we consider the actual values, is the sum [ SH + SL] positive, negative, or zero?

e) For this process, is entropy a conserved quantity?  Justify your answer. Explain any

differences between this answer and your answer to 1(e) above.
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IV. Outside the Insulation…

3. In Question #2, we determined the change in entropy of everything inside the insulating jackets, (i.e.

the cubes).  We must now consider the change in entropy of everything else apart from the cubes and the

rod.

If you were to physically describe “everything else,” what are some things that would be considered to

be part of “everything else?”  Discuss this with your group (and don’t be afraid to think big).

a) If we assume the jackets that surround the cubes and the rod are perfectly insulating, is there

any heat transfer to the outside world from the metal cubes or rod?  Why or why not?

b) Calculate the change in entropy of everything outside the insulation due to heat transfer from

the metal cubes and rod. SEVERYTHING ELSE = ____________

c) Based on your answer to (b), does the entropy of everything else due to heat transfer from the

cubes and rod increase, decrease or remain the same?

V. System and surroundings

4. For now, let us refer to the high-temperature cube alone as the thermodynamic “system.” We will

define “surroundings” (same as “surrounding environment”) as everything that is not the system.

a) If we define the high-temperature cube as the system, describe what would be considered the

“surroundings.” Would the surroundings include the low-temperature cube? Hint: What criteria are we

using to determine whether or not something should be considered as part of the surroundings?

b) With this definition of system and surroundings, and considering the same one-minute time

interval,

i) does the entropy of the system increase, decrease, or remain the same?

ii) does the entropy of the surroundings increase, decrease, or remain the same?

Be sure to explicitly address the change in entropy of everything that is not the system.
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V. System and surroundings (cont.)

5. Now, let us refer to the low-temperature cube alone as the “system.”

a) Using our previously stated definition, describe what would be considered the “surroundings,”

or “surrounding environment.”  Would the surroundings include the high-temperature cube?

b) With this new definition of system and surroundings,

i) does the entropy of the system increase, decrease, or remain the same?

ii) does the entropy of the surroundings increase, decrease, or remain the same?

6. Given our definition of system and surroundings in Question #4, can one determine the sign of

entropy change of the [system + surroundings]? If no, why not? Answer the same question for the case

of Question #5.

If you can determine the sign in both cases, is the sign the same in both, or different?  Explain.

Summarize the results from Question #4 and Question #5 in the following table.

Question #4 Question #5

System consists of…

Surroundings consist of…

Entropy of system increases,

decreases, or remains the same?

Entropy of surroundings

increases, decreases, or remains

the same?

Entropy of system +

surroundings increases,

decreases, or remains the same?

Discuss the results with your group.  What can you say about the entropy of the system +

surroundings for these two processes?
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V. System and surroundings (cont.)

7. You overhear a group of students discussing the above problem.  Carefully read what each student is

saying.

Student A:  Well, the second law says that the entropy of the system is always increasing.

Entropy always increases no matter what.

Student B: But how do you know which one is the system?  Couldn’t we just pick

whatever we want to be the system and count everything else as the surroundings?

Student C: I don’t think it matters which we call the system or the surroundings, and

because of that we can’t say that the system always increases.  The second law states that

the entropy of the system plus the surroundings will always increase.

Analyze each statement and discuss with your group the extent to which it is correct or incorrect. How

do the students’ ideas compare with your own discussion about the table on the previous page?

8. For both Questions #4 and #5, we made a specific designation for the “system” and considered the

“surroundings” to include everything that was not the system.

a) If we wanted to describe the “system,” and the “surroundings” with one word—where

surroundings refers to everything outside the system—what word could we use?

Hint: Remember to think big!

Write this word in the box in part (c) below.

b) Review your answers from Question #6: did you determine that the Ssystem + Ssurroundings

increases, decreases, or remains the same, for the case in Question #4? What about for the

case in Question #5?

Would these answers change whether or not we included objects outside the insulation in

“the surroundings?” Why or why not?

c) Complete this sentence: During any real process, the entropy of the

…increases.  …decreases.  …remains the same.
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VI. Heat flow from low to high?

9. Suppose for a moment that heat transfer occurred spontaneously from low-temperature objects to

high-temperature objects; draw an arrow to indicate the direction of positive heat transfer in this case.

a) Could such a situation actually occur “spontaneously” (that is, without any outside

intervention)?

If it did occur, how would it affect your answers to Question #2? Explain in detail for each

part a-d.

b) In real processes where high- and low-temperature objects are in thermal contact, is there ever

actually zero heat transfer?

Suppose heat transfer between the high- and low-temperature cubes were zero; how would

that affect your answers to Question 2?

c) Based on your answers to (a) and (b), can you make any specific statements regarding the

change in [Ssystem + Ssurroundings] that could occur in any real process? (For example, could that

total change be negative or zero?) Explain.

Insulated

cube at TH

Insulated

metal rod

Insulated

cube at TL
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VII. Reversible Processes

10. Let’s now consider a situation that is similar to our original problem.  The temperature of the L cube

is the same as it was before, but the temperature of the H cube is lower than its previous value and is

designated by
H
T .  Although the H cube now has a lower temperature, it is still higher than that of the L

cube.

We’ll designate the heat transfers to the high- and low-temperature cubes in this case as  Q H  and  Q L ,

respectively. Consider that the heat transfer process, that originally lasted one minute, now lasts

sufficiently long to ensure that the heat transfer to the higher-temperature cube is exactly the same as it

was before, that is,  Q H = QH.

a) Is  Q L , greater than, less than, or equal to QL?

b) Consider the magnitudes (absolute values) of the entropy changes in the high-temperature

cube,  S H , and the low temperature cube,  S L , and compare them to the values in the

original case SH and SL  (see Question #2):

i) is  S H  greater than, less than, or equal to SH ?

ii) is 
L
S  greater than, less than, or equal to SL ?

c) Is the total entropy change in this present case [  S H +  S L] greater than, less than, or equal to

the total entropy change in the original case ][ LH SS + (when the temperature difference

between the cubes was larger)?

Insulated

cube at T’H

Insulated

metal rod
Insulated

cube at TL
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VII. Reversible Processes (Cont.)

Suppose the temperature of the L cube remains the same, and the H cube drops to a temperature that is

still higher, but infinitesimally close to the temperature of the L cube.

d) For this case, what will happen to the total entropy change of the two cubes during the

process, assuming that the heat transfers continue to remain the same as before? What can

you say about the time required for this new process, compared to those before?

e) As the temperatures of the cubes come closer together, what happens to the total entropy

change of the universe, compared to that in the previous cases?

f) In reversible heat transfer processes, all temperature differences are infinitesimally small (and

there is no frictional dissipation). Such processes are idealizations of real processes; no real

process is completely reversible.

i) Based on your answers to the questions above, what would be the entropy change of the

universe in a completely reversible process?

ii) Could this be the entropy change of any real process?  Why or why not?

Check that your answer is consistent with your statements in Question #9, part c.



Appendix XI. Pre- and post-instruction, concrete-context question, entropy of “object +

air in the room” vs. entropy of the “universe” responses, spring 2005 and 2006

Pre-Instruction

Spring 2005

Matched Sample

Post-Instruction with

Two-Processes Tutorial

Spring 2005

Matched Sample

Pre-Instruction

 Spring 2006

Post-Instruction with

Two-Blocks Tutorial

Spring 2006

N = 131 N = 131 N = 223 N = 231

Entropy

of the

object +

air

Entropy

of

Universe

Entropy

of the

object +

air

Entropy

of

Universe

Entropy

of the

object +

air

Entropy

of

Universe

Entropy

of the

object +

air

Entropy

of

Universe

Increases 20% 27% 23% 26% 15% 14% 68%* 44%*, †

Remains the

same
69% 62% 70% 66% 74% 72% 24%* 53%*, †

* Statistically significant difference compared to pre-instruction response on same item (p <

0.0001)
†
 Statistically significant difference compared to “object + air” response on same question (p <

0.0001)


