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Abstract 

There have been many investigations into the factors that underlie variations in individual student 

performance in college physics courses. Numerous studies report a positive correlation between 

students� mathematical skills and their exam grades in college physics. However, few studies 

have examined students� learning gain resulting from physics instruction, particularly with regard 

to qualitative, conceptual understanding. We report on the results of our investigation into some 

of the factors, including mathematical skill, that might be associated with variations in students� 

ability to achieve conceptual learning gains in a physics course that employs interactive-

engagement methods. It was found that students� normalized learning gains are not significantly 

correlated with their pretest scores on a physics concept test. In contrast, in three of the four 

sample populations studied it was found that there is a significant correlation between normalized 

learning gain and students� pre-instruction mathematics skill. In two of the samples, both males 

and females independently exhibited the correlation between learning gain and mathematics skill. 

These results suggest that students� initial level of physics concept knowledge might be largely 

unrelated to their ability to make learning gains in an interactive-engagement course; students� 

pre-instruction algebra skills might be associated with their facility at acquiring physics 

conceptual knowledge in such a course; and between-class differences in normalized learning 

gain may reflect not only differences in instructional method, but student population differences 

(�hidden variables�) as well.  
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I. INTRODUCTION 

 A primary goal of research in physics education is to identify potential and actual 

obstacles to student learning, and then to address these obstacles in a way that leads to 

more effective learning. These obstacles include factors that originate during instruction � 

such as instructional method � as well as those that relate to students� pre-instruction 

preparation. Previous studies have examined various pre-instruction factors that may or 

may not be related to students� performance in physics, with mathematics skill being the 

most common factor. However, in almost all of these studies, the measures of 

performance adopted were student grades on course exams that emphasized quantitative 

problem solving. Only in a few cases was students� conceptual knowledge assessed 

through the use of qualitative problems. And with only a handful of exceptions, there was 

no attempt to directly measure the gain in student understanding that resulted from 

instruction. 

This paper examines students� mathematics skills and their initial physics 

conceptual knowledge as factors that may underlie variations in student learning. 

Learning gain is assessed through pre- and post-testing using a qualitative test of physics 

conceptual knowledge. One objective of the present study is to determine whether 

individual students� learning gains are correlated with their initial level of conceptual 

knowledge as measured by pretest scores on the physics concept test. Another objective 

is to determine whether those learning gains are correlated with the students� 

mathematics skills, as determined by pre-instruction testing by a college entrance exam 

or an algebra/trigonometry skills exam.  
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In Secs. II and III, I review the results and limitations of previous studies on the 

relation of students� pre-instruction preparation to their performance in physics courses. 

In Sec. IV I describe a widely adopted measure of student learning called �normalized 

learning gain� and explain why it is an appropriate measure for the objectives of this 

study. In Sec. V various factors that may be related to learning gain are discussed, and the 

motivation of the present study is presented. The context, methods, and results of the 

present study are described in Secs. VI, VII, and VIII respectively, and the results are 

discussed in Sec. IX. The limitations of this study are outlined in Sec. X, and implications 

for instruction are examined in Sec. XI. The methodological implications of this study for 

physics education research are addressed in Sec. XII, and Sec. XIII briefly summarizes 

the main results. 

 

II. PREVIOUS RESEARCH ON THE RELATION OF VARIOUS FACTORS TO 

STUDENTS� PERFORMANCE IN PHYSICS COURSES  

A. Students� mathematical preparation 

Many studies appear to show that mathematical ability (mathematical aptitude or 

accumulated procedural knowledge) is positively correlated to success in traditional 

introductory physics courses that emphasize quantitative problem solving. Most of these 

studies have involved college physics students; some have examined the preparation that 

these students received in high school. Some studies have found a positive correlation 

between physics course grades and scores on the mathematics part of college entrance 

exams.1,2 Many investigators have found positive correlations between grades in college 

physics and a mathematics skills pretest administered at or near the very beginning of the 

 3



course. Typically, these pretests involve algebra and trigonometry, although most 

investigators do not provide samples of their tests.3-8 

The correlation between mathematics skill and physics performance has not been 

observed to hold consistently. Reported correlation coefficients vary widely and are not 

statistically significant for all groups tested. For example, one study found that the overall 

correlation between grades and an algebra pretest was not significant for males 

(r = +0.10), while for females the correlation was highly significant (r = +0.48).8 

All the studies cited have focused on student performance either on a single 

physics course exam or on a mean grade from several such exams. In contrast, Hake et 

al.9 and Thoresen and Gross10 have reported preliminary investigations of student 

learning gains in physics courses, determined by both pre-instruction and post-instruction 

testing. They found that students with the highest learning gains in physics had scored 

higher on a mathematics skills test than students with the lowest learning gains.  

Several investigators have found positive correlations between grades earned by 

students in their college physics courses and their previous experience and/or grades in 

either high-school, college mathematics courses, or high-school physics courses.11,12 

However, the overall weight of the literature on factors related to college students� 

performance in introductory physics is that the measurable impact on performance is 

substantially larger for mathematics skills as determined by pre-instruction testing, than it 

is from any measure derived simply from students� experience or lack of it in previous 

physics or mathematics courses. 
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B. Students� reasoning skills and other factors 

Another factor that has been studied extensively is the possible relation between 

precourse measures of students� reasoning ability and their college physics grades. 

Significant correlations between these variables have been reported by numerous 

investigators2,4-6,8,13 However, the reported correlations are not significant for all groups, 

and in most cases the reports do not provide samples of the specific questions used to 

assess reasoning ability. Recently, Clement14 has reported a positive correlation between 

a pretest measure of reasoning ability and learning gain in a high-school physics course. 

Other factors that have been found significant to one degree or another are 

students� achievement expectations,15 homework grades,6 high-school GPA,11,12 college 

GPA,16 and a variety of cognitive and emotional factors.17 A large number of significant 

preparation and demographic factors were identified by Sadler and Tai.12 Two studies4,7 

found that students� performance on a pretest of physics conceptual knowledge had a 

significant positive correlation with course grades. 

 

III. LIMITATIONS OF PREVIOUS RESEARCH 

Almost all of the investigations discussed in Sec. II used students� scores (or 

grades derived from those scores) on physics course exams as a performance measure. It 

is very likely that in most cases, all or most of the exam questions would be described as 

traditional quantitative physics problems, although in most cases the nature of the 

questions was not discussed explicitly. There is by now large body of literature18-24 that 

demonstrates convincingly that good performance on such problems does not necessarily 

indicate good understanding of the physics concepts involved. Performance on such 
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traditional problems may not even be highly correlated with conceptual understanding. 24 

Our conclusion is that virtually all previously published studies on the relationship 

between mathematics preparation and physics course performance leave open the 

question of how, and whether, such preparation may be related to conceptual 

understanding of physics. 

Although various factors � such as mathematics preparation � may be correlated 

with students� performance on physics exams, this correlation is not direct evidence that 

there is a causal relationship between the two. To our knowledge, no studies directly test 

for such a relation. Therefore, it would be improper to conclude from previous studies 

that, for instance, requiring students to practice and improve their mathematics skills 

before beginning college physics would necessarily improve their performance in these 

courses. 

Another important limitation of previous research is its failure to examine student 

learning. A student�s performance on a course exam is an indication of the student�s 

knowledge state at the time of the exam, and is not necessarily related to what the student 

has learned in a particular course. Hence, it is necessary to have some measure of student 

learning, in contrast to a measure that merely quantifies students� knowledge. One way to 

provide such a measure is to test students both at the beginning and at (or near) the end of 

a course to assess how much they may have learned. In this way we can obtain a measure 

of students� learning gain, which is the quantity that, in principle, is most susceptible to 

change by actions of the instructor and students during the course. Students� performance 

on course exams may or may not be correlated with learning gain, and the relationship 

between performance and learning gain is, at best, an indirect one. Nearly all previous 
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studies have failed to directly investigate the possible relationship of mathematics (and 

other) preparation to students� learning gain in a college physics course. 

 

IV. NORMALIZED LEARNING GAIN: A KEY MEASURE OF STUDENT 

LEARNING 

The question of how to measure learning gain is not simple and is subject to many 

methodological difficulties.25 Because the maximum on a diagnostic instrument is 100%, 

it is common to observe a strong negative correlation between students� absolute gain 

scores (posttest minus pretest score) and their pretest scores: higher pretest scores tend to 

result in smaller absolute gains, all else being equal. For example, in Hake�s study of 62 

introductory physics courses, absolute gain scores on the Force Concept Inventory (FCI) 

were significantly (negatively) correlated with pretest score (r = �0.49).20 An alternative 

is to normalize the gain score to account for the variance in pretest scores. Such a 

measure is g, the normalized gain, which is the absolute gain divided by the maximum 

possible gain: 

scorepretestscorepossiblemaximum
scorepretestscoreposttestg

−
−

= . 

Hake found that <g>, the mean normalized gain, on the FCI for a given course was 

almost completely uncorrelated (r = +0.02) with the mean pretest score of the students in 

the course.26 Therefore, the normalized gain seems to be relatively independent of pretest 

score. This independence leads us to expect that if a diverse set of classes has a wide 

range of pretest scores but all other learning conditions are similar, [xx note change xx] 

the values of normalized learning gain measured in the different classes would not differ 

significantly. This pretest-independence of the normalized gain also suggests that a 
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measurement of the difference in <g> between two classes having very different pretest 

scores would be reproduced even by a somewhat different test instrument which results 

in a shifting of pretest scores.  

Empirical evidence for this hypothesis is provided by an analysis of the data from 

Table II of Ref. 21. Students� knowledge of mechanics concepts was tested with two 

different diagnostic instruments, the FCI, and the Force and Motion Conceptual 

Evaluation (FMCE).22 The pretest scores and absolute gain scores yielded by the two 

instruments were significantly different, but the normalized gains were statistically 

indistinguishable. The most persuasive empirical support for use of <g> as a valid and 

reliable measure is that <g> has now been measured for tens of thousands of students in 

many hundreds of classes worldwide with extremely consistent results for classes at a 

broad range of institutions with widely varying student demographic characteristics 

(including pretest scores).27  

V. FACTORS THAT MAY BE RELATED TO NORMALIZED LEARNING GAIN 

 An obvious question is, What are the factors that are related to g? Is g related to 

instructional method, or to individual characteristics of the students and their pre-

instruction knowledge state? 

 Hake�s original investigation20 focused on <g> for mechanics courses as 

determined by pre- and post-testing of the FCI. He distinguished two separate groups of 

courses: (1) those taught with interactive-engagement (IE) methods, and (2) traditional 

courses that make little or no use of IE methods. Many studies have been published that 

broadly confirm Hake�s major findings,27 which are that normalized learning gain <g> as 

measured by the FCI in introductory mechanics courses is (1) largely independent of 
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class mean pretest score; (2) virtually independent of the instructor when traditional 

instructional methods are used; and (3) tends to be significantly higher (by a factor of 

about two or more) when IE methods are used in comparison with traditional 

instructional methods. The issue of what other factors may be related to variations in g, 

besides instructional method, has, with few exceptions, not been addressed.  

 Another way of investigating the factors that are related to g is to examine the g 

scores of individual students to see if the characteristics of individual students may be 

related to their own learning gains. Hake et al.9 found indications that students� 

mathematics skills and spatial visualization abilities might be related to their normalized 

learning gain, and similar results were reported in Ref. 10. Research on high-school 

students has led Clement to suggest14 that reasoning ability may be an independent factor. 

Preliminary data reported in Ref. 28 strongly suggest that there may be a certain amount 

of variation in <g> that can be ascribed to pretest scores (that is, students� initial degree 

of physics conceptual knowledge). However, in a separate study,21 the correlation 

between <g> and pretest scores was very low: r = � 0.06 on FCI; r = +0.16 on FMCE. 

The objective of the present study is to aid in building a model of the factors that 

significantly affect students� learning success in physics. To this end, we examine 

individual students� normalized learning gain scores using a qualitative test of physics 

conceptual knowledge; students are tested both before and after instruction. We hope to 

determine (1) whether individual learning gains are correlated with students� initial level 

of conceptual knowledge as measured by pretest scores on the same physics concept test, 

and (2) if those learning gains are correlated with the students� mathematics skills, as 
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determined by pre-instruction testing by a college entrance exam or an 

algebra/trigonometry skills exam. 

 

VI. CONTEXT OF THIS STUDY 

 This investigation was carried out in the second semester of a two-semester 

algebra-based general physics sequence. The data reported here originate in four courses 

taught by the author: two at Southeastern Louisiana University (SLU) in Fall 1997 and 

Spring 1998, and two courses taught at Iowa State University (ISU) in Fall 1998 and Fall 

1999. The number of students in each course ranged from 65 to 92. The focus of the 

course was electricity and magnetism, including DC circuits. The SLU course consisted 

of three 50-minute meetings each week held in the lecture room. (A separate lab course 

was optional and was not taught by the lecture course instructor; there was no recitation 

session.) At ISU, in addition to three weekly 50-minute meetings in the lecture room, 

there is one 50-minute recitation session each week. (There is also a separate required lab 

in which the lecture instructor has only limited involvement.) These courses made much 

use of IE instructional methods and employed a variant of Mazur�s Peer Instruction.24,29 

The primary curricular material was the Workbook for Introductory Physics.29 Instruction 

in the recitation sessions at ISU was modeled closely on the University of Washington 

tutorials,23 although most of the material used came from the Workbook for Introductory 

Physics.  

  

VII. METHODS 
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Students� conceptual knowledge was assessed by the administration of a physics 

concept diagnostic test on the first and last days of class; only students who took both 

pre- and posttests are part of the sample. Students� preinstruction mathematics skill was 

assessed by their score either on the ACT Mathematics Test or on an algebra-

trigonometry skills test. A variety of statistical tests were then performed to assess the 

relation (if any) between students� individual normalized learning gain, and their pre-

instruction scores on both the physics concept test and the mathematics skills test. 

 The diagnostic instrument was the Conceptual Survey in Electricity (CSE). This 

33-item multiple-choice test surveys knowledge related to electrical fields and forces and 

the behavior of charged particles. The questions on the CSE are almost entirely 

qualitative. About half of the items are also included on the Conceptual Survey in 

Electricity and Magnetism (CSEM).19 The creators of the CSEM remark that it contains 

�a combination of questions probing students� alternative conceptions and questions that 

are more realistically described as measuring students� knowledge of aspects of the 

formalism.�19 

On the pretest, students were given enough time to respond to all 33 questions. 

Neither grades nor answers for this pretest were posted or discussed. On the last day of 

class, the same CSE was administered as an extra-long in-class quiz. However, students 

were asked to respond to only 23 of the questions.30 The CSE was used in this abridged 

form for various reasons. For example, in some cases, the notational conventions differed 

from what was used in class (for instance, electric field lines are used on the CSE, but 

only field vectors were used in class). In other cases, the questions involved material that 

was covered peripherally or not at all in class. Only the 23 designated items were graded, 
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both on the pretest and the posttest. All CSE scores discussed in this paper (as well as 

quantities derived from them) refer only to the 23-item abridged CSE.  

For the SLU samples, scores on the ACT Mathematics Test were used to assess 

pre-instruction mathematics skill. This test is a college entrance exam, and so there is 

typically a 1-3 year gap between the time students take this test and the time they take the 

CSE. The instrument used at ISU is a 38-item multiple-choice test originally developed 

by Hudson during the course of his investigations (cited in Sec. II) into the effect of 

mathematics preparation on students� physics performance. It includes the following 

topics among others: solving and manipulating one- and two-variable algebraic 

equations; factoring quadratic equations; unit conversions; elementary trigonometry; 

straight-line graphs; powers-of-ten notation; simple word problems; and addition of 

numerical and algebraic fractional expressions. (See Appendix A for representative 

problems.) 

 All students who register for the first semester course in the algebra-based physics 

sequence at ISU are required to take this test; it does not count toward the students� 

grade. Because students take this exam at the beginning of the first semester course, there 

was a gap of at least two months (as in the case of summer-school students) between 

when they took the mathematics test and when they took the CSE. More often, the gap 

was five to 12 months. 

 Several modifications were introduced during the ISU 1999 course which, it was 

hoped, would improve instruction. Both graduate student teaching assistants for the 

course were members of the Physics Education Research Group and had extensive 

experience and capabilities in inquiry-based instruction. For many of the recitation-
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session/tutorials, an additional undergraduate teaching assistant was present. During this 

course, both the teaching assistants and the course instructor spent many out-of-class 

hours in individual instruction with students who solicited assistance.  

 

VIII. RESULTS 

A. CSE Pretest scores are not correlated with individual normalized learning gain 

 Table I shows the correlation coefficients between individual students� g scores 

and their CSE pretest score for the four samples. The correlations are very small and none 

is close to being statistically significant. Figure 1 shows the value of g and the CSE 

pretest score for all students in the ISU 1998 sample. The correlation coefficient for this 

relation is r = 0.00; there is no evidence of any pattern in the data points. This random 

pattern is typical of all four samples.  

Table II presents comparisons of <g> for several different subgroups of two 

different samples.31 For the 1998 sample in Table II, �Top half� refers to the students 

with the 29 highest scores on the CSE pretest; �Bottom half� refers to the group with the 

30 lowest CSE pretest scores. (The 59-student sample was divided in this way to form 

two groups of nearly equal size; the groups had zero overlap in pretest scores. Pretest 

scores ranking #24-29 were identical [eight correct], and scores in the group #30-43 were 

equal [seven correct]). This method was used to form the other subgroups represented in 

Tables II and IV.) The mean CSE pretest scores of these two groups were very different, 

but their normalized gains were not statistically distinguishable according to the one-

tailed t-test: <gtop half> = 0.68, <gbottom half> = 0.63, t = 0.84, p = 0.20. A comparison 

between even more disparate groups is also shown in Table II. �Top quartile� refers to 
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students with the 15 highest CSE pretest scores in the 1998 sample, while �Bottom 

quartile� refers to the 16 lowest in that sample. The normalized gains of these two groups 

were virtually identical. Table II also presents a similar set of comparisons for the ISU 

1999 sample. The results for this sample share the main characteristic of the 1998 sample, 

even for the extreme �Top fifth� and �Bottom fifth� groups: <gtop fifth> = 0.73, <gbottom fifth> 

= 0.67; these gains are not significantly different according to the one-tailed t-test (t = 

0.98, p = 0.17).  

Figure 2 shows the distributions of the normalized gain among the Top half and 

Bottom half groups from the 1998 sample; there are no striking differences between the 

pretest groups. A similar result was found for the 1999 sample. This result reinforces the 

conclusion from the correlation analysis that the pretest score on the CSE is not a 

significant factor in determining a student�s normalized learning gain.  

 

 

B. Mathematics pretest scores are correlated with normalized learning gain 

 Table III presents the correlation coefficient and corresponding statistical 

significance (that is, p value) for the relation between students� g scores and their scores 

on the pre-instruction mathematics skills test. The correlation for the SLU 1998 sample 

was not statistically significant; the correlations for the other three samples were all 

statistically significant at the p < 0.01 level.  

 Figure 3 shows g as a function of score on the Mathematics Diagnostic Test for 

the ISU 1998 sample. A positive correlation between the two variables is evident. A 

similar correlation (though not as large) is also evident in the SLU 1997 and ISU 1999 
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sample data. Examination of the residuals, that is, the differences between data points and 

regression fit line, shows that there are no marked nonlinearities evident in the data, and 

further that the sample variances are fairly uniformly distributed (that is, the data are 

�homoscedastic�).  

Table IV presents comparison data for subgroups chosen in a manner analogous 

to that used in Table II. For instance, the first two lines compare <g> for the group of 

students in the ISU 1998 sample with the highest math pretest scores (Top half, actually 

the top 47%) to the group with the lowest scores in the same sample (Bottom half, the 

lowest 53%). In this case � in sharp contrast to the situation in Table II � the learning 

gains of the two groups are very different, with high statistical significance: <gtop half> = 

0.75, <gbottom half> = 0.56; p = 0.0001 (one-tailed). When we go to groups even further 

separated by their mathematics pretest scores � the top quartile and bottom quartile 

groups � we find an even greater difference between their mean normalized gain: <gtop 

quartile> = 0.77, <gbottom quartile> = 0.49, p = 0.001 (one-tailed). 

Also shown in Table IV is an analogous set of data for the ISU 1999 sample. The 

differences in <g> between the Top half and Bottom half mathematics pretest groups are 

substantially smaller than in the 1998 sample, but are still statistically significant: 

<gtop half> = 0.75, <gbottom half> = 0.66, p = 0.04 (one-tailed). Moreover, the difference in 

learning gain is substantially larger for the groups closer to the extremes of the 

mathematics pretest score range, that is, the Top quartile and Bottom quartile groups: 

<gtop quartile> = 0.78, <gbottom quartile> = 0.60, p = 0.005 (one-tailed). This difference is 

consistent with the data from the 1998 sample and significantly strengthens the case that 
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the observed correlation is real and not an artifact produced by the particular selection of 

the subgroups.  

Figure 4 shows the population distributions for the normalized gain for the ISU 

1998 sample, portraying the top and bottom mathematics pretest score groups. There is a 

very noticeable skewing of the distributions toward the high end of the g scale for the 

high math group. Again, this result is consistent with the correlation analysis and is in 

striking contrast to the distributions shown in Fig. 2.  

It is worth noting another feature of Table IV. Although the normalized gains for 

the Top half and Top quartile groups in the 1999 sample are nearly identical to those for 

the corresponding groups in the 1998 sample, that is not the case for the Bottom half and 

Bottom quartile groups. The g�s for those groups are substantially larger in the 1999 

sample. It is tempting to ascribe these higher g values to the differences in the 

instructional methods implemented in 1999, although this is merely speculation.  

 

 

C. The math score/learning gain correlation is present for both males and females 

 Table V presents the correlation coefficients and corresponding statistical 

significance for the male and female subgroups of the two ISU samples (selected because 

they are larger and contain more reliable data). Although the value of r for males in the 

ISU 1998 sample is larger than that for females, the difference is not statistically 

significant (p = 0.50, using Fisher transformed values32). In the 1999 sample, the 

correlation coefficients for males and females are nearly identical. All four correlations 
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are statistically significant at the p < 0.05 level for a one-tailed test, warranted in this case 

given the positive correlation observed for both full samples. 

 

IX. DISCUSSION OF RESULTS 

 The results in this study regarding the lack of correlation between normalized 

learning gain and CSE pretest score are very consistent. However, the results for the 

mathematics pretest score are in striking contrast to those for the CSE pretest score: in 

three of the four samples, there is a significant positive correlation (p < 0.01) between 

normalized learning gain and mathematics pretest score. This relation observed between 

normalized learning gain and pre-instruction mathematics skill is consistent with the 

preliminary results presented in Refs. 9 and 10; however, the present study represents the 

first comprehensive examination of this relation. 

 Another way to look at the data is to compare the mathematics pretest scores for 

high gainers and low gainers. Hake et al.9 arbitrarily define high and low gainers as those 

with g ≥ 1.3<g> and g ≤ 0.7<g>, respectively, where <g> is the mean for the class. They 

found that high gainers scored 19% higher on the mathematics skills pretest than did the 

low gainers in their sample. If we apply their definitions and examine mean mathematics 

pretest scores <m> (m is the percentage of correct responses), we find that 

<m>high gainers = 81%, <m>low gainers = 60% for ISU 1998 and <m>high gainers = 80%, 

<m>low gainers = 65% for ISU 1999. These results are remarkably consistent with those 

reported in Ref. 9. 

 The results of Ref. 8 suggested that any observed correlation might not be a 

general characteristic of all students, but of females only. Just as CSE pretest scores were 
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a potentially confounding variable, students� gender has to be considered one as well. 

With this consideration in mind, the fact that results for both ISU samples show 

statistically indistinguishable correlation coefficients for male and female subpopulations 

is very significant. Moreover, all four of these correlations were significant at the p < 

0.05 level (one-tailed test) for their individual subpopulation.  

The relatively low correlation coefficients found in this study (between +0.30 and 

+0.46) yield little predictive power regarding the expected value of the learning gain of 

an individual student, based on his or her pre-instruction score on the mathematics skills 

test. On the other hand, when assessing the likelihood of a student becoming a high 

gainer or a low gainer (defined, in this case, as one with gains above or below the class 

median, respectively), considerably more predictive power is possible. For instance, if we 

look at the students in the ISU 1998 sample with the lowest mathematics scores (the 

Bottom quartile in Table IV), we find that only 21% of them (3 of 14) have gains above 

the class median of g = 0.693. In comparison, among the group with the highest 

mathematics scores (Top quartile), 77% (10 of 13) have gains above the class median. 

Therefore, knowledge of whether a student had unusually high or low mathematics scores 

could have allowed a fairly high-confidence prediction of whether they would end up 

with above- or below-average gains.  

In striking contrast to this predictability based on mathematics pretest score, the 

knowledge of a student�s CSE pretest score would have allowed no such prediction. The 

group with the lowest CSE pretest scores (Bottom quartile in Table II) had 50% (8 of 16) 

with gains above the class median. At the same time, the group with the highest CSE 
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pretest scores (Top quartile in Table II) also had the same number of above-median and 

below-median gains (7 of each, with one student at exactly the class median). 

 Higher predictive power is associated with the mean learning gains of the 

subgroups at the high and low ends of the mathematics scale. The students in the ISU 

1998 sample with the lowest mathematics scores have an expected normalized gain (95% 

confidence interval) ranging from 0.35 to 0.64. In comparison, the expected gain of the 

group with the highest scores on the mathematics exam range from 0.68 to 0.85. 

Therefore, we can be highly confident that � for an equivalent sample � the mean gain of 

the lowest mathematics group would be below the class mean of 0.65, while that of the 

highest mathematics group would be above the mean. Obviously, no comparable 

statement could be made about the groups with the lowest and highest CSE pretest 

scores. The correlations observed for the other samples are lower, and therefore so is the 

predictive power, but the same pattern persists.  

 

X. LIMITATIONS OF THIS STUDY 

A. Student population. Students enrolled in calculus-based physics courses often 

have a much more substantial mathematics background than those in the algebra-based 

course used in this study; this background may be associated with a different relation 

between mathematics skills and conceptual learning gain in physics. It should also be 

noted that the population of the two ISU samples was 60% female, a high proportion in 

comparison to the calculus-based course. 

 B. Subject Matter. Students have considerably less day-to-day experience and 

accumulated common sense notions regarding electric and magnetic phenomena in 

 19



comparison with mechanics. Many of the concepts studied (for example, the 

electromagnetic field) are considerably more abstract than most encountered in the 

introductory mechanics course. It is conceivable that if a comparable study were done in 

connection with student learning in a less abstract and more familiar domain, and if 

assessment relied less on interpretation and analysis of formal representations, the results 

might be different.  

 C. Instructional Methods. The instructional methods used in this study were 

certainly not comparable to traditional methods of instruction in widespread national use. 

They made much use of IE methods, including interactive lecture29 and group work in the 

style of the University of Washington tutorials. On the exams, quizzes, and homework, 

the emphasis was very much on the type of qualitative questions that are used on the 

Conceptual Survey in Electricity (without teaching to the test). Overall normalized gains 

were unusually high by national standards. It is possible that the results reported in this 

study are related in some fashion to the courses� instructional emphasis on qualitative and 

conceptual problem solving. 

D. Hidden variables. It is an inherent limitation of any study that relevant 

variables might be neglected. For a study such as this one, the particular danger is that 

some of the neglected variables might actually be so important that their omission is 

ultimately the source of a spurious apparent correlation that would disappear if these 

variables had been included. This can happen if the neglected variable is strongly 

correlated with the targeted dependent variable (learning gain, in this case.) 

For example, logical reasoning ability is a variable that some investigators have 

found to be significant. Suppose that logical reasoning ability is strongly correlated with 
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physics learning gain, and moreover that this reasoning ability is also strongly correlated 

with pre-instruction mathematics skill. We might find that, for a given level of reasoning 

ability, there is no separate correlation between mathematics skill and physics learning 

gain. That would imply that improving reasoning ability might improve learning gain, but 

that improving mathematics skill would not have such an effect in the absence of any 

accompanying changes in reasoning ability.  

  

XI. IMPLICATIONS FOR INSTRUCTION 

The evidence from this study is that in an IE course, students� normalized learning 

gains on the CSE are essentially independent of their pretest scores. The implication is 

that, at least with this type of instruction, students� potential to achieve gains in 

understanding is independent of whether they begin the course with high, low, or even 

zero initial levels of physics concept knowledge. Knowledge of students� CSE pretest 

scores might allow some prediction of their probable final level of understanding, but 

would allow no prediction of their ultimate learning gains. This result is encouraging 

because it implies that students have an equal chance at learning regardless of their initial 

knowledge of concepts in electricity. 

Although students� initial level of physics concept knowledge may have no 

impact on their learning gains, the same cannot be said for their initial level of 

mathematics skill. In three of the four samples in this study, students with higher levels of 

preinstruction mathematics skill had substantially higher learning gains on the physics 

concepts � independent of their initial knowledge of those concepts � when compared to 

students with lower mathematics skill levels (true for both males and females at ISU).  
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 Whether or not this correlation would hold up if other variables, unknown and 

therefore hidden to us, were included in the analysis is irrelevant to the potential utility of 

mathematics skill as an indicator of probable high- and low-gainers. If there are indeed 

other relevant variables associated with learning gain, it seems likely that they would be 

correlated with mathematics skill. Until they are known, mathematics skill may be used 

as a substitute measure for those variables � perhaps not so directly related as those other 

(hypothetical) variables to the targeted parameter of learning gain, but associated with it 

nonetheless. (The possibility of using mathematics skill as an indicator of physics 

learning potential was suggested in Ref. 9 and by many of the investigators cited in Sec. 

II.) It should be emphasized that the correlation observed between mathematics 

preparation and normalized learning gain does not imply that mathematics skill is 

causally related to physics concept learning gains. It simply means that whatever factors 

may ultimately be found to be causally related to learning gain, mathematics skill is 

probably associated with them in some manner. 

 In the same sense in which the lack of g versus CSE pretest score correlation was 

encouraging, the positive correlation between g and a mathematics pretest score is 

somewhat disconcerting. The implication may be that students with lower levels of pre-

instruction mathematics skills (whatever the cause) may be unlikely as a group to attain a 

level of physics learning gain achieved by those with greater mathematics skill, all else 

being equal. An instructor who transports instructional methods and curricula from one 

student population to another with much lower mathematics skill levels might find that 

lower learning gains are achieved. However, the poorer expected outcome of using the 

same instruction with students of lower mathematics skill leaves open the possibility that 
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different instructional methods and curricula might ultimately achieve the same levels of 

learning gain success with the new population as with the old. The higher learning gains 

of the low-math group in the ISU 1999 sample (which received modified instruction) 

might offer some mild support for this speculation. 

 

XII. METHODOLOGICAL IMPLICATIONS  

A. The observed correlations might imply that widely diverse populations taught with 

identical instructional methods might manifest different normalized learning gains. 

The low-math and high-math subgroups in this study were taught with identical 

instructional methods (for all practical purposes). And yet it is clear that their mean 

normalized learning gains were significantly different. If one imagines an entire class 

populated with low-math students at institution A, and a different class � perhaps at a 

different institution B � populated with high-math students, it is plausible that instruction 

carried out with identical methods and materials � perhaps with the identical instructor � 

might nonetheless result in different values of <g> for the two classes.  

The extent of the variation in g in a given population that might be ascribed to 

variations in mathematics preparation would depend on the range of mathematics skills 

represented in that population; it could be estimated by using the linear regression 

equation that is a best fit to the g versus Mpre data, where Mpre is the mathematics pretest 

score (for example, the data shown in Fig. 3). Using this method, we estimate for the ISU 

samples that variations in <g> ascribable solely to the average variability of students� 

mathematics preparation (that is, for students having Mpre within the range <Mpre> ± 1.0 
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s.d., where s.d. is the standard deviation of the Mpre scores) are confined to the range <g> 

≈ <g>mean ± 0.15<g>mean.  

If we speculate that mechanics courses would show correlations between 

normalized gain and mathematics preparation similar to those in this study, we can 

estimate that the variation in <g> ascribable to mathematics preparation would be ± 0.07 

for <g> ≈ 0.45 (a typical value for mechanics courses that employ interactive 

engagement). This variation is much smaller than the difference commonly found 

between courses taught with IE and traditional methods, respectively.  

 

B. It may be necessary to consider possible second-order effects due to sample-to-sample 

differences in pre-instruction knowledge state. 

 This particular statement can easily be put in a familiar context. The author 

measured <g> on the CSE to be ≈ 0.48 in his courses at SLU. After attempting to 

improve his instructional methods and materials, he found <g> ≈ 0.67 in the courses he 

taught at ISU. (Mean CSE pretest scores were 28% at SLU, 32% at ISU.) Does this 

difference imply that he succeeded in improving his instruction? Does the large apparent 

gain in <g> perhaps overstate the actual improvement? This type of practical question is 

one that we often attempt to answer with pre-/post-test data.  

 If one is actually planning an experiment in which <g> is to be a measure of 

comparative learning gains, it is standard practice to randomize the different samples so 

that the effects of any potential uncontrolled variables (such as mathematics preparation) 

may be expected to cancel each other out. One can argue that <g> should never be used 

to compare potentially non-equivalent (that is, non-randomized) samples. The author�s 
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courses at SLU and ISU are a good example of this problem. Should one directly 

compare the <g>�s in the two cases, or is some set of hidden variables at work, variables 

that actually make the two student samples not equivalent?  

It is important to emphasize that there is no reason to believe that effects of 

hidden variables � even combined � are likely to be of the same scale as the two-

standard-deviation differences in <g> on the FCI between traditional instruction and IE 

instruction documented by Hake. Moreover, with a sample as large as Hake�s, it is very 

unlikely that the IE/non-IE differences in <g> could possibly be due to the effects of 

hidden variables that have not been averaged out. However, when one has much smaller 

samples in just a few courses taught at widely disparate institutions where the differences 

in <g> may not be so large, there is much more uncertainty in the comparison. To first-

order, large differences in <g> are probably due to instructional method. However, 

almost certainly, higher-order effects of unknown scale and origin influence comparative 

<g> statistics in as yet unknown ways.  

  

XIII. SUMMARY 

The results of this study provide substantial evidence that factors other than 

instructional method play a role in determining students� normalized learning gains. 

Further research to identify and measure these factors should aid in understanding and 

addressing students� learning difficulties in physics, as well as in analyzing data that 

result from assessments of student learning. 
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Table I. Correlation between normalized learning gain and pretest score on CSE. 
 

Sample N Correlation coefficient between student 
learning gain g and CSE pretest score 

Statistical significance 
 (two-tailed) 

SLU 1997 45 +0.15 p = 0.35 (not significant) 
SLU 1998 37 +0.10 p = 0.55 (not significant) 
ISU 1998 59  0.00 p = 0.98 (not significant) 
ISU 1999 78 +0.10 p = 0.39 (not significant) 
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Table II. ISU samples: Gain comparison, students with high and low CSE pretest scores. 
<g> represents the mean of individual students� normalized gains; s.d.≡ standard 
deviation.  
 N Mean CSE Pretest Score <g> (s.d.) 
 
1998 
 
Top half 

 
 
 
29 

 
 
 
44% 

 
 
 
0.68 (0.19) 

Bottom half 30 25% 0.63 (0.23) 
    
Top quartile 15 50% 0.65 (0.21) 
Bottom quartile 16 20% 0.66 (0.24) 
    
    
1999    
    
Top third 30 43% 0.74 (0.18) 
Bottom third 27 18% 0.72 (0.17) 
    
Top fifth 14 49% 0.73 (0.20) 
Bottom fifth 15 14% 0.67 (0.13) 
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Table III. Correlation between normalized learning gain and mathematics pretest score. 

Sample N Correlation coefficient between student 
learning gain g and mathematics pretest score 

Statistical significance 
 (two-tailed) 

SLU 1997 45 +0.38 p < 0.01 
SLU 1998 37 +0.10 p = 0.55 (not significant) 
ISU 1998 59 +0.46 p = 0.0002 
ISU 1999 78 +0.30 p < 0.01 
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Table IV. ISU samples: Gain comparison, students with high and low mathematics 
pretest scores. <g> represents the mean of individual students� normalized gains. s.d. ≡ 
standard deviation.  
 N Mean Mathematics Pretest Score <g> (s.d.) 
 
1998 
 
Top half 

 
 
 
28 

 
 
 
89% 

 
 
 
0.75 (0.15) 

Bottom half 31 63% 0.56 (0.22) 
    
Top quartile 13 93% 0.77 (0.14) 
Bottom quartile 14 49% 0.49 (0.25) 
    
    
1999    
    
Top half 37 86% 0.75 (0.20) 
Bottom half 36 55% 0.66 (0.22) 
    
Top quartile 21 90% 0.78 (0.17) 
Bottom quartile 20 44% 0.60 (0.23) 
 
 

 30



 
 
 
 
Table V. Correlation between normalized learning gain and mathematics pretest score for 
males and females (ISU samples). 

 N 
Correlation coefficient between 
student learning gain g and 
mathematics pretest score 

Statistical significance 
(one-tailed test) 

ISU 1998: males 22 +0.58 p < 0.01 
ISU 1998: females 37 +0.44 p < 0.01 
ISU 1999: males 33 +0.29 p = 0.04 
ISU 1999: females 45 +0.31 p = 0.03 
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Figure Captions 
 

Figure 1. Scatter plot of ISU 1998 sample; data points correspond to individual students, 

plotted according to their individual normalized learning gain g score on the Conceptual 

Survey in Electricity (CSE) and their pretest score on that same exam. Correlation 

coefficient r = 0.00. 

Figure 2. Distribution of normalized learning gains for ISU 1998 sample: light bars, 

students with 30 lowest scores on CSE pretest (<g> = 0.63); dark bars, students with 29 

highest scores on CSE pretest (<g> = 0.68). (<g> represents the mean of individual 

students� normalized gains.) 

Figure 3. Scatter plot of ISU 1998 sample. Data points correspond to individual students, 

plotted according to their individual normalized learning gain g on the CSE and their 

pre-instruction score on the Mathematics Diagnostic Test. Correlation coefficient r = 

+0.46, p = 0.0002; the data are best fit by the linear relation g = 0.228 + 0.01496M, 

where M is the number of correct answers on the Mathematics Diagnostic Test 

(maximum = 38).  

Figure 4. Distribution of normalized learning gains for ISU 1998 sample: light bars, 

students with 31 lowest scores on the Mathematics Diagnostic Test (<g> = 0.56); dark 

bars, students with 28 highest scores on the Mathematics Diagnostic Test (<g> = 0.75). 
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Distribution of Gains:   
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Appendix 
 

Selected problems from the Mathematics Diagnostic Test used at ISU (author: H.T. 
Hudson): 

1. ?915 22 =−  

a. 6 b. 6  c. 12 d. 12  e. 135  

 

2. Find y as a function of x from the following equations. 

 2x � t = 2 

 y � 4 = 3t 

 

a. y = 3x + 4 
b. y = 10 � 3x 
c. y = 3x + 6 
d. y = 4 � 6x 
e. y = 6x � 2 

 

3. .________
6
7

14
3

=+  

a. 29/21 
b. 21/20 
c. 10/21 
d. 18/49 
e. 5/21 

4. If the angle A = 4π/6 radians, what is the value of A in degrees? 

 a. 60°  b. 120°  c. 90°  d. 45°  e. 210° 

5. ._______
102
1012

2

8
=

×

×
−

 

 a. 6 × 10�4 b. 10 × 1010  c. 10 × 10�10  d. 6 × 1010  e. 10 × 106 
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