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 Introduction 

Physics education research is a broad field that covers everything from pedagogical 

techniques in the classroom to the thought processes of students as they attempt to understand a 

topic. This thesis focuses on a single aspect of physics education: mathematics. Mathematical 

capability is paramount to success in any quantitative physics course. Many studies have found a 

correlation between basic math skills and physics final exam scores. Another study observed that 

learning gains are correlated with math pretest scores in three of four classes while the pretest 

scores on the Conceptual Survey in Electricity (which measured physics knowledge) did not 

correlate with learning gains in any of the four classes. Additionally, mathematical ability 

correlates positively with success even in a service physics course where the qualitative 

characteristics of a system are considered more important than numerical values.1-3  

 Despite the importance of math to physics success, there is a massive amount of evidence 

to suggest that many students are ill-equipped to solve the problems they face in a typical 

introductory physics course. These problems span a variety of essential math skills, including 

vector math, trigonometry, and algebra. Many papers have been published regarding student 

understanding of vectors. One study gave a seven-question diagnostic to students in introductory 

physics courses, and found that in some classes, over half of the students were unable to add 

vectors in two dimensions, an essential skill in almost every standard quantitative physics course.4 

Another very large study of vectors identified ten vector concepts that are central to physics and 

developed a test to identify the main misconceptions for each concept that were causing difficulties 

for students.5 Other researchers have looked into physics students’ understanding of the 

trigonometric functions.6 There is also trigonometry research in the math education community 

that can yield useful insights into the plight of physics students. For instance, there is evidence that 
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typical students lack the abilities to fully visualize the geometric properties of the trigonometric 

functions.7  

 This thesis has two goals: to develop a preliminary basis for a longer study documenting 

the mathematical difficulties of introductory physics students and to identify some of the ideas and 

abilities that the more successful students use to solve problems. For the most part, this thesis will 

focus on math problems devoid of any physical context; the problems the students will be asked 

to solve have no physics concepts embedded in them. This differs from studies which examine 

how students deal with math while solving physics problems. At the end of this thesis, I will 

present a set of evidence-based techniques and ideas that might allow students to better solve the 

math problems that they will encounter in a physics classroom. 

Literature Review 

The literature mentioned in this thesis is only a small part of the plethora of papers that 

have been written about physics education. There have been numerous relevant papers written by 

members of the physics education community, and many of those will be mentioned here. There 

is also some work done in the math education community that is relevant to this thesis. Often, these 

papers do not focus on physics, but they do address the same issues: students’ struggles trying to 

solve problems with math. However, the bulk of the literature referenced here is based in physics 

education. There are many different mathematical methods that students use in a physics course, 

including graphs, vectors, trigonometry, and algebra. 

Reading papers has provided an immense amount of background and helpful ideas that 

motivated the decisions in the interviews and diagnostics. Between the physics and math education 

research communities, there are more relevant papers than I could ever hope to read. The focus of 
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these papers varies from high school to upper division undergraduate courses. The most useful 

(and most plentiful) papers focused on introductory undergraduate courses, but there are still 

lessons to be learned from papers that are focused on other grade levels. 

Graphs 

Graphs occur frequently is most introductory physics courses. As an example, students in 

introductory mechanics are frequently presented with or asked to create graphs of position, 

velocity, and acceleration vs time. Without a clear understanding about how graphs work, students 

cannot expect to fully comprehend or appreciate these exercises. While there was no original 

research done on graphs for this thesis, there is still information to be found in the literature. One 

study probed students’ aptitude at examining the slope and derivative of functions. They found 

that a relatively high percentage of students (about 85%) could correctly find the slope of a function 

at several different points and compare them. They also found that when those same students were 

asked to rank the derivatives of several functions at a point, some of them used the second 

derivative instead, yielding incorrect answers.8 This suggests that student difficulties may not be a 

problem with understanding slope, but rather a failure to connect the idea of a derivative with the 

slope of a function. 

There are many other papers that address graphs in a physics context. These papers can 

still give insights into students’ understanding of graphs. Several very thorough studies of graphs 

in physics found many common difficulties for students, including thinking of the graph as a 

picture of the situation, confusing the value of the function with its slope, confusing different 

variables such as position and velocity.9-10 Another study found that many students struggled with 

negative velocity values on a graph, thinking that they should be positive (like speed) instead of 

negative (because velocity has a direction).11 Finally, researchers found that when students are 
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graphing complex, piecewise functions, they benefit from graphing each part separately before 

graphing the entire thing.12 These are just a few of the findings that are present in the literature on 

graphing, but that is not the only type of math physics students struggle with. 

Trigonometry is a topic that is not discussed frequently in the physics education literature. 

One study looked at students’ understanding of the trigonometric functions in a non-major 

introductory physics course and found that many students lack a conceptual understanding of 

nuances of the trigonometric functions. For instance, they found that many students could not 

explain why the term 2݂ߨ is used to set the frequency of a cosine function. Interestingly, they 

found that students performed relatively well on questions about right triangles (90% correct), 

which is quite different than the results found on the diagnostics used in our study (see Findings 

section).6 There is also mathematics education research that is relevant to this thesis. One study at 

the high school level found that students have significant struggles with more complex 

trigonometry problems. As an example, only 9% of students correctly solved for x when 30݊݅ݏ° ൌ

 13.ݔ

Much like trigonometry, vectors are a mathematical tool that most introductory physics 

students deal with on an almost daily basis. One essential study identified 10 concepts in vector 

math that physics students should know, including the direction and magnitude of a vector, 

components, and vector addition and subtraction.5 However, previous research and work done for 

this thesis suggest that many students lack the knowledge to perform even basic vector operations. 

Studies have found that some students think of vector direction as an approximate instead of exact 

quantity, so they would consider two vectors to have the same direction if they both pointed up 

and to the right for example.5 Another study found that a distressingly small percentage of students 

(as low as 22% in one algebra-based class) were able to correctly add vectors in two dimensions.4 
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Many researchers have examined how students add vectors. A small study found that tip-to-tail 

was the most popular method for vector addition by students, but that components were also a 

popular way to add vectors.14 A separate study found that while arrow (tip-to-tail) and component 

methods had similar results on vector addition, students who used components had a significantly 

higher success rate on vector subtraction.15 

Graphs, trigonometry, and vectors are all examples of mathematical tools that students 

struggle with. But students can also struggle with problems if they are presented in different ways. 

Math problems can be given with numbers, symbolic variables, or other numeric representations 

as the coefficients in a problem. Several papers have found that success rates can be as much as 

50% higher on numeric problems, but that this discrepancy isn’t found across all student levels. 

Instead, the poorest students had a very large difference between symbolic and numeric problems, 

while the highest-performing students scored roughly the same on both types of questions.16-17 It 

remains to be seen whether these students score better on the symbolic problems because they have 

a better understanding of mathematics, or if instead a nuanced understanding of mathematics that 

allows them to score better on the symbolic problems also helps them outperform their classmates 

on numeric problems as well. 

The fact that so many students struggle with such simple problems has significant 

implications for the physics classroom. According to cognitive load theory, when a student 

struggles to solve one of the preliminary steps of a problem (like finding the length of the side of 

a triangle), there are fewer cognitive resources left to solve the rest of the problem.18 So until 

students become proficient in the necessary mathematics, they will not be able to fully commit 

their efforts to the physics. 
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However, there are ways to address these issues. Multiple studies have found that a shift in 

instructional style and supplementary tutorials can significantly improve student performance on 

math problems involving trigonometry and vectors.7,14 

 Procedure 

 The primary method for research involves giving short diagnostics to a large number of 

students. These diagnostics were mainly given in the spring and fall semesters of 2016 at ASU to 

four different physics courses, PHY 111, 112, 121, and 131. PHY 111 and 112 cover mechanics 

and electricity & magnetism, respectively. These classes are algebra-based and meant for non-

engineering students. To enroll in PHY 111, students must have taken Precalculus, or be 

concurrently enrolled in Brief Calculus. PHY 121 and 131 also cover mechanics and electricity & 

magnetism, but they are meant to be calculus-based and directed toward engineering students. 

Calculus 1 is a prerequisite and Calculus 2 is a corequisite for PHY 121. As a note, the classes for 

physics majors, PHY 150 and 151, were avoided for the study. 

Before each semester started, professors were asked to use the first recitation or lab day to 

give the exams. In the spring, all the diagnostics were given on the Polytechnic campus. There 

were 257 students that took the exam. The class breakdown is as follows: 72 in PHY 111, 52 in 

PHY 112, 104 in PHY 121, and 29 in PHY 131. In the fall, some diagnostics were given on the 

Polytechnic campus, and some on the Tempe campus. The PHY 111, 112, and 121 students were 

all on the Polytechnic campus, and the 131 students were on the Tempe campus. A total of 679 

students took the fall diagnostic; the breakdown is: 94 in PHY 111, 54 in PHY 112, 98 in PHY 

121, and 433 in PHY 131. The large proportion of students in PHY 131 is simply because one of 

the professors that agreed to give the diagnostic had multiple 200 student lectures; this was not 

optimal for the study in any way. It’s also important to note that the spring and fall diagnostics are 
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not identical, as some (but not all) of the questions were modified, eliminated or added for the 

second diagnostic. There were also two versions of the fall diagnostic that had small differences. 

Students were usually given about half an hour to complete the diagnostic at the end of the first 

recitation or lab. According to the professors that administered the diagnostics, almost all students 

finished in that time. 

The diagnostics are the source of the bulk of the data for this thesis, with over 10,000 data 

points (over 10 questions per diagnostic, with almost 1,000 diagnostics). They are effective for 

getting data on a large number of students. However, they give a limited amount of information 

per student. It is often difficult to determine a student’s thought process from the work on a 

multiple choice question. To dig deeper into student’s understanding, interviews are necessary. 

The one-on-one interviews provide a much more thorough and in-depth examination of 

student thought processes. Unlike a diagnostic, which requires deducing the students’ thoughts 

from the work left behind, an interview allows the researcher to explicitly ask the student what 

they were thinking when solving that problem. The obvious downside of interviews is the time 

required for each interview. The interviews are typically broken into two parts, each lasting 

roughly 20-30 minutes. First, the students work through the problems (the same questions as the 

diagnostics). After that, the student is recorded as they explain how they solved each problem. The 

researcher can ask questions whenever necessary, but it is typically most effective to let the student 

do the bulk of the talking. It is important not to plant ideas in the students’ minds that are not their 

own, or to remind them of things they had forgotten. 

For this thesis, I conducted 12 interviews, all in the spring semester. There was at least one 

student from each of the four physics courses (111, 112, 121, 131), but not all of the interviewees 

took the diagnostics. 8 of the students were on the Tempe campus and did not take the diagnostic 
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at the beginning of the semester. To get more interview participants, some students on the Tempe 

campus were invited to participate in the interviews. It is also important to note that many of the 

interviews were done late in the semester, with several taking place in April. This means that the 

interview scores are probably inflated relative to the diagnostics, as students have had up to two 

months learning and developing these mathematical techniques in class before being interviewed. 

Because of this, a direct comparison between the interviews and the diagnostics should only be 

made with extreme care. 

Findings 

Before presenting my results, it is important to note that these are preliminary results. The 

findings below are not definitive; rather, they should be reexamined and amended as more data 

(particularly from interviews) is collected. Whenever possible, I will try to recommend the next 

steps to dig deeper into a particular topic. First, I will go over some of the topics that students 

struggle with, and then I will explain the methods uncovered in this study that students use to 

effectively solve problems.  

Student Difficulties 

Trigonometry: 

I did a significant amount of original research regarding trigonometry; about 1/3 of the 

questions on the diagnostics and interviews involved trigonometry. Over the course of this thesis, 

it has become apparent that trigonometry is an area that causes problems for many students. For 

example, the following problem was given on every diagnostic: 
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Figure 1: Diagnostic question that requires the use of a trigonometric function; Correct 

Answer: 20 

This problem is much simpler than the typical problem in physics, but the success rate for 

this problem was typically only about 50%. Some class responses from the fall diagnostics are 

below:  

 

Figure 2: Fall PHY 111 responses to the question in Figure 1; N=94 

Fall PHY 111

20 5 15

11.55 Other Blank
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Figure 3: Fall PHY 112 responses to the question in Figure 1; N=54 

 (Notice that the percentage of correct answers increases from the first to the second 

semester courses.) This problem is the easiest version of a trigonometry problem, and over half 

the students in the first semester courses failed to answer it correctly. The most common wrong 

error was 5, and was caused by an algebra error or incorrectly using a trigonometric function, such 

as the example below:  

 

Figure 4: Example of incorrect student work for question in Figure 1 

Fall PHY 112

20 5 11.55 Other Blank
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 Despite writing down the well-known mnemonic SOH CAH TOA, the student above still 

wrote the incorrect relationship, leading to a wrong answer.  

 Students have similar difficulties with the inverse trigonometric relationships.  A similar 

problem is shown below, but this time the two sides are given and the student is asked to find the 

angle.  

 

Figure 5: Diagnostic question requiring an inverse trigonometric function; Correct Answer: 30° 

The following figures show responses to this question: 

 

Figure 6: Fall PHY 111 responses to the question in Figure 5; N=94 

Fall PHY 111

30 45 60 Other Blank
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Figure 7: Fall PHY 112 responses to the question in Figure 5; N=54 

Note that the answer is in degrees; however, a significant portion of students gave only the 

number, with nothing to indicate that response was in degrees. 

Figures 6 and 7 correspond to the same student populations as Figures 2 and 3, respectively. 

Comparing the two charts shows that there is almost no difference in the success rate for the 

problems shown in Figures 1 and 5. This suggests that most students do not have much difficulty 

taking the inverse of a trigonometric function, so it seems likely that improving student 

performance with the trigonometric functions will automatically increase their performance with 

the corresponding inverse functions. 

Vectors 

 There were also questions about vectors in the diagnostics and interviews. In the spring, 

students were asked to compare vector directions and add vectors in one dimension. In the fall, 

one question on the diagnostic involved 2-D vector addition. Many of the student responses 

confirmed things that have already been reported by other studies. For instance, Barniol and 

Zavalla5 found that many students thought that vectors that pointed in the same general direction 

Fall PHY 112

30 45 60 Other Blank
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had the same direction. This was verified during the interviews, where 25% of the students said 

the vectors in Box A of Figure 8 had the same direction. C is the correct answer. 

 

Figure 8: Vector direction question on spring diagnostics and interviews; Correct Answer: C 

Question taken from Vector Concept Quiz19 

 

Spring PHY 112

C Blank E H

B D I G
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Figure 9: Spring PHY 112 responses to the question in Figure 8; N=52 

 Figure 9 shows the responses on the vector direction problem in Figure 8. Roughly half of 

the students selected E, which included all the vectors in Figure 8 being in the same direction. 

Questions on the diagnostic also confirmed that many students struggle with vector 

addition. There were three different vector addition questions asked: two vectors in one dimension 

(Figure 10 below), two vectors in two dimensions (Figure 13 below), and three vectors in two 

dimensions (Figure 17 below).  

 The students asked to add two vectors in one dimension had success rates in the 50-80% 

range. The responses of the PHY 111 and 121 students are shown below. (The correct response 

was C.) 

 

Figure 10: 1-D vector addition question on the spring diagnostics; Correct Answer: C 
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Question taken from Vector Concept Quiz19 

 

Figure 11: Spring PHY 111 responses to the question in Figure 10; N=72 

 

Figure 12: Spring PHY 112 responses to the question in Figure 10; N=52 

 

Spring PHY 111

C Blank E B

G F D A

Spring PHY 121

C Blank E F

A D B G
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 The most common wrong answer, E, isn’t even a vector! This sugests that a significant 

portion of students (~25% in PHY 111) don’t even have a correct idea of what a vector is. 

Additionally, when faced with a two-dimensional problem like the questions below, student 

responses get even worse. 

 

Figure 13: 2-D vector addition with two vectors, included on one version of the fall diagnostic; 

Correct Answer: C 
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 There were no PHY 121 classes that took this version of the diagnostic, but the results for 

the other three classes are below (C is the correct answer): 

 

Figure 14: Fall PHY 111 responses to the question in Figure 13; N=94 

 

Figure 15: Fall PHY 112 responses to the question in Figure 13; N=54 

Fall PHY 111

A B C D E F blank

Fall PHY 112

A B C D E F blank
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Figure 16: Fall PHY 131 responses to the question in Figure 13; N=433 

 Only about one sixth of PHY 111 students answered this question correctly. Even in second 

semester calculus based physics, ~25% of students answered this question incorrectly. 

 Less than a quarter of students in PHY 111 were able to add two very simple vectors in 

two dimensions. However, when a third vector is added, the scores go down further.  

Fall PHY 131

A B C D E F blank
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Figure 17: 2-D vector addition with three vectors on one version of the fall diagnostic; Correct 

Answer: D – Question taken from Vector Concept Quiz19 
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Figure 18: Fall PHY 111 responses to the question in Figure 17; N=94 

 

Figure 19: Fall PHY 112 responses to the question in Figure 17; N=54 

 

Fall PHY 111

A B C D E F blank

Fall PHY 112

A B C D E F blank
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Figure 20: Fall PHY 121 responses to the question in Figure 17; N=98 

 

Figure 21: Fall PHY 131 responses to the question in Figure 17; N=433 

 Notice that as the problems increase in complexity, more and more students get incorrect 

answers. So perhaps it is the multi-step nature of these problems that is creating some of the 

confusion rather than a fundamental lack of understanding about vectors. However, the prevalence 

of answers that aren’t even vectors suggests that something is seriously wrong with the basic 

knowledge of a significant portion of students. 

Algebra  

Fall PHY 121

A B C D E F blank

Fall PHY 131

A B C D E F blank
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 There is an even more basic branch of mathematics in which students frequently make 

mistakes: algebra. Most problems, such as the trigonometry problems already shown, require at 

least some algebra to get to the final answer. Other questions only involve algebra. Both types of 

problems were examined on the diagnostics, and both provided many examples of students making 

small mistakes on algebra. For example, in the spring, students were asked to solve the following 

problem:  

 

Figure 22: Problem on spring diagnostic involving parametric equations; Correct Answer: y=15x 

 

Figure 23: Spring PHY 111 responses to the question on Figure 22; N=72 

Spring PHY 111

y=15x Blank Other
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Figure 24: Spring PHY 112 responses to the question on Figure 22; N=52 

 

Figure 25: Spring PHY 121 responses to the question on Figure 22; N=104 

 

Spring PHY 112

y=15x Blank Other

Spring PHY 121

y=15x Blank Other

Spring PHY 131

y=15x Blank Other
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Figure 26: Spring PHY 131 responses to the question on Figure 22; N=29 

To learn more about why so many students were getting this problem wrong, the students’ 

work was closely analyzed to identify common errors. Out of the 96 errors, I was able to identify 

the source of the incorrect answer on 61 of them, and of those 61, 45 made algebra errors that led 

to incorrect answers.  

 Students had more success on simpler problems. For example, the fall diagnostics had the 

following question: 

 

Figure 27: Simple algebra problem on the fall diagnostics; Correct Answer: A 

 

Figure 28: Fall PHY 111 responses to the question in Figure 27; N=94 

Fall PHY 111

A B D E blank
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As shown in Figure 28, student response to this problem was far better than the problem in 

Figure 22. This confirms that the vast majority of students know how to perform basic algebra 

operations including: substitution, addition, multiplication, and order of operations. However, they 

frequently make algebra mistakes when solving more complicated problems, such as those found 

in Figure 22. The only additional skill needed to solve Figure 22 is operating on both sides of an 

equation, so perhaps this is the fundamental skill that many students are lacking. Alternatively, it 

is conceivable that the complexity of the problem overwhelms the students, causing them to 

“freeze up.” 

Fractions 

There are other researchers investigating students’ mathematical capabilities at ASU. As 

part of a separate study, Dr. Jose Menendez20 gave a multiple choice test to PHY 121 students to 

test their math capabilities. Compare the results from the following two questions. 

 

Figure 29: Student responses to a fraction addition problem; Correct Answer: 1/3  
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Figure 30: Student responses to a fraction multiplication problem; Correct Answer: 1 ଵ

଺
 

yards 

 Both of the above questions involve computation with two fractions, but the success rate 

for the first is more than double the second. There are two possible reasons for this. First, it is 

possible that students are just more comfortable adding fractions than multiplying them. The 

second possibility is that students have a difficult time getting from the word problem to the 

equation 3 ଵ

ଶ
∗ ଵ
ଷ
ൌ ଻

ଶ
∗ ଵ
ଷ
ൌ  If this is the case, it is not actually the mathematical content of the .ݔ

problem that is difficult for students, it is the way it is asked. This seems more likely, but it is 

impossible to assert with any confidence without additional research.  

 Careless Errors 

 There is another problem for many students that is often disguised as an algebra error. 

During the interviews, when working through the questions the first time, students would 

occasionally make mistakes, often algebra errors. However, quite frequently when explaining their 

work, they noticed the mistakes and corrected them. Over 12 interviews, there were 35 questions 

with incorrect answers. Of those 35, 12 contained errors that the students recognized and fixed. So 

only about two thirds of the errors were fundamental misconceptions or problems; the rest were 
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the result of going too quickly, skipping steps, etc. These errors included accidentally multiplying 

instead of dividing, using the wrong trigonometric function, and typing an expression into the 

calculator incorrectly.  

 The prevelence of careless errors (which do not represent a fundamental misunderstanding 

of a mathematical concept) means that all the diagnostic results should be taken with a healthy 

amount of skepticism. For instance, when examining the cause for the incorrect answers in solving 

the parametric equations in Figure 22, it was found that 45 of the 61 diagnosable incorrect answers 

were algebra errors. But it seems plausible that a significant number of those errors were actual 

careless errors, and not an incorrect understanding of algebra. It is now especially important to be 

watching for careless errors in future interviews. 

 Symbolic Notation 

 There is also some evidence to suggest that students are more successful solving problems 

that use ordinary numbers (i.e. 5, 3/4, 24.7) rather than constants (a, b, c) or functions (cos(20), 

sin(40)). During the interviews, the students were asked to solve the following problem: 

 

Figure 31: System of equations for students to solve on the diagnostics and interviews; 

Correct Answer: x=3.4, y=9.4 
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 Multiple students claimed that the problem was more difficult because the coefficients of 

the variables were not ordinary numbers. For example, one student got confused because ܿ20ݏ݋ 

and ܿ70ݏ݋ looked similar. To further investigate this, the fall diagnostics had two versions of this 

question, one with cosines and one with constants. However, there was no statistically significant 

difference between the results of two problems, indicating that students may find symbolic and 

functional coefficients to be of equal difficulty. 

Student Strategies for Solving Problems 

Poor strategies 

SOH CAH TOA 

 Now, before explaining some concepts that would seem to most benefit physics students, 

it may also be helpful to dispel (or at least cast doubt on) several popular problem-solving strategies 

that preliminary results suggests may not be as effective as many people believe. In trigonometry, 

the (in)famous SOH CAH TOA is an extremely ingrained part of most students’ understanding; it 

is a mnemonic device that helps many students remember which trigonometric relationship relates 

certain sides of a triangle (so as an example, sine [S] corresponds to the opposite [O] divided by 

the hypotenuse [H]).  

 Surprisingly, the diagnostics provided some evidence that would suggest that SOH CAH 

TOA is not a magic bullet, as many students and teachers believe, and in fact might even be a 

crutch that gives students a false sense of confidence regarding trigonometry.  

 To examine the effectiveness of SOH CAH TOA, one of the trigonometry problems on the 

diagnostic was examined to see if the expression SOH CAH TOA appears in the students’ work. 
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The following is an example of a student who obviously knows and considered SOH CAH TOA 

but still got the problem wrong. 

 

Figure 32: Example of student work with SOH CAH TOA and the wrong answer 

Then a chi squared test was done to test the statistical significance between writing SOH 

CAH TOA and getting the answer correct. For the fall semester, data was collected separately for 

each physics class. The results are below:  

PHY 111 
Number 
Correct 

Number 
Incorrect χ²  p value 

With SOH CAH TOA  11  7  2.6245  0.10 

Without SOH CAH TOA  30  45   

  
PHY 112  Correct  Incorrect  

With SOH CAH TOA  10  3  3.166  0.08 

Without SOH CAH TOA  20  21   

  
PHY 121  Correct  Incorrect  

With SOH CAH TOA  5  12  1.5182  0.22 

Without SOH CAH TOA  37  44   

  
PHY 131 (Tempe)  Correct  Incorrect  
With SOH CAH TOA  32  10  5.4778  0.02 

Without SOH CAH TOA  347  44   
Table 33: Results of chi squared test, showing the range of the p value, demonstrating statistical 

significance 
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The p value is in the range shown on the far right column. Notice that the only class with 

a p value less than 0.05 (the standard for statistical significance) is PHY 131, and it actually 

signifies a statistically significant correlation between writing SOH CAH TOA and getting the 

answer incorrect! At first glance, this result seems to fly in the face of common belief. However, 

there are a few things to keep in mind when interpreting these results. First, this only counts the 

students that wrote SOH CAH TOA. It is not only possible but extremely likely that many students 

thought of SOH CAH TOA and used it to solve the problem without explicitly writing it down on 

the paper. Second, the students in PHY 131 have already taken Calculus 1 and PHY 121, both of 

which use trigonometry, so it is conceivable that these students no longer need SOH CAH TOA to 

remember the trigonometric functions. However, this does not imply that SOH CAH TOA was not 

useful to them in developing their understanding of the trigonometric functions. Further research 

is almost certainly needed to make any credible claim for the effects of SOH CAH TOA on student 

performance.  

Vector representation: tip-to-tail 

Returning to vector addition, one of the interview questions was the following one 

dimensional vector addition problem. 
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Figure 34: 1-D vector addition problem asked during interviews; Correct Answer: C 

Question from Vector Concept Quiz (by David Meltzer) 

5 of the 12 students used some sort of tip-to-tail method to solve this problem. One of those 

five was still uncertain even when helped through the problem. Unfortunately, this isn’t the best 

problem to test tip-to-tail effectiveness on because the vectors are in one dimension, but other 

studies have also looked at vector addition. However, tip-to-tail may not be the most effective way 

to add vectors; research suggests that there is a more effective way to add vectors. 

Successful Strategies 

Vector representation: components 

The other technique the interview students used when answering vector questions was 

vector component analysis. During interviews, 6 students used component-like reasoning to get 
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the correct answer. Together with the results of a study done by Heckler and Scaife15, this suggests 

a possible advantage in using component analysis. 

The use of vector components may also be very useful when considering vector direction. 

The interviewees also answered this question: 

 

Figure 35:  Vector direction problem given on interviews; Correct Answer: C 

Question from Vector Concept Quiz (by David Meltzer) 

 7 of the 12 students looked at the components of the vectors or calculated the slope to see 

that the vectors in Box A did not all have the same direction, and all of them got the answer correct. 

Only two students managed to get the correct answer without referencing the components or slope 

of the vectors. This suggests that using vector components instead of a tip-to-tail representation 
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may provide an advantage when solving problems involving vector subtraction and direction. 

However, additional research (particularly interviews) will be necessary to confirm these 

suspicions.  

 Practice with the trigonometric functions 

 I have already suggested that, when solving trigonometry problems, SOH CAH TOA may 

not be as effective as many people (both teachers and students) think it is. Instead, evidence 

suggests that it may be more important for students to have lots of practice using the trigonometric 

functions than that students have SOH CAH TOA memorized. Consider the PHY 131 students: 

PHY 131 Correct Incorrect χ² p value 
With SOH CAH TOA 32 10 5.4778 0.02 

Without SOH CAH 
TOA 347 44  

Table 36: Results of chi squared test, showing the range of the p value, demonstrating statistical 

significance. Only for PHY 131 Tempe students in Fall 

 It is safe to assume that most of these students have a lot of practice with the trigonometric 

functions. In fact, there is actually a statistically significant correlation between writing down SOH 

CAH TOA and getting an incorrect answer. This seems to suggest that as students get more 

practice with the trigonometric functions, they become more capable at solving trigonometry 

problems easily, without needing to write out SOH CAH TOA each time. This is backed up by the 

interviews. Some students could write out SOH CAH TOA and then with some effort solve the 

problem. However, the more successful students had enough experience with these functions that 

they were able to instantly write down the equations with no difficulty. This level of aptitude can 

only be achieved with a significant degree of practice. This result makes sense when you consider 

cognitive load theory.18 If students have to spend a lot of cognitive resources figuring out which 
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trigonometric function to use, they have less resources to finish solving the problem. Therefore, 

when confronted with students who are struggling in trigonometry, it may be more beneficial to 

have them work through lots of simple practice problems instead of explaining SOH CAH TOA 

to them again. This way, they are able to set up the problem effortlessly simply by force of habit, 

instead of struggling to use SOH CAH TOA to begin the problem. 

Rechecking work 

Perhaps the most surprising result of this research yet is that careless errors may be causing 

a significant percentage of all incorrect answers by students. In the interviews, a third of all errors 

were identified and fixed by the students themselves, so it follows that students can have more 

success by simply checking their work. A diagnostic was administered in one class over the 

summer semester (there will be additional comments on the summer diagnostic later) that asked 

students if they checked their work. However, there were very few responses to that question, so 

it seems that interviews may be the only way to ensure that students check their work and test for 

careless errors. 

 Symbolic notation 

There are also a few successful tactics that students use to solve systems of equations. It 

was mentioned before that students struggle more with equations that have symbolic constants (a, 

b, c) or functions (cos20, sin70) instead of simpler numbers. It follows that students should benefit 

from seeing and understanding how symbolic constants can be manipulated as easily as numeric 

constants. If they can learn to treat symbolic variables with the same ease as numeric values, their 

success rates should increase. 

Algebraic “toolbox” 
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 Additionally, there was a common issue with the problem shown below. 

 

Figure 37: System of equations for students to solve on the diagnostics; Correct Answer: 

ݔ ൌ ௕௬

௔
ൌ ௖

௕ାೌ
మ

್

	 , ݕ ൌ ௔௫

௕
ൌ ௖

௔ା್
మ

ೌ

 

Note that the first part of the problem requires solving for x in terms of y or vice versa 

before making the appropriate substitution. The figures below show the responses for each of the 

classes in the fall semester. 

 

Fall PHY 111

Only A correct Correct

Incorrect Blank



37 
 

Figure 38: Fall PHY 111 responses to the question in Figure 37; N=94 

 

Figure 39: Fall PHY 112 responses to the question in Figure 37; N=54 

 

Figure 40: Fall PHY 121 responses to the question in Figure 37; N=98 

Fall PHY 112

Only A correct Correct

Incorrect Blank

Fall PHY 121

Only A correct Correct

Incorrect Blank
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Figure 41: Fall PHY 131 responses to the question in Figure 37; N=433 

The charts above are the results for solving for x, but the results for y are almost identical. 

Notice that many students were able to solve part A, but very few students could solve part B. 

Many students had struggles like the one shown below: 

 

Figure 42: Example of student work failing to finish solving the system of equations 

Figure 42 only shows the end of this student’s work, but it shows a common roadblock that 

many students appeared to face. They find y in terms of x (or the other way around) and make the 

substitution, but then they become stuck, apparently unable to realize that they need to use the 

distributive property to get x (or y) by itself. This suggests that there may be an algebraic “toolbox” 

of techniques like the distributive property that physics students use to solve problems but that 

Fall PHY 131

Only A correct Correct

Incorrect Blank
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many students forget to use. Other possible candidates include the commutative property and 

substitution. It may be beneficial for future work to keep looking for other algebraic tools that 

belong in every physicists “toolbox.”  

Additional Observations 

There are a few other stray observations made while conducting research that do not fit in 

the results section but still deserve some mention. First, there was a summer semester diagnostic 

given to a single PHY 121 class. However, it is barely mentioned in this thesis because the results 

were far lower than any other class that took any of the diagnostics. The questions were identical 

or of comparable difficulty, but the percentages of correct answers were far lower. Below is a 

question that was on all three diagnostics and the results for each (only considering the PHY 121 

students). 

 

Figure 43: Question that appeared on all diagnostics, including the summer diagnostic; 

Correct Answer: 30° 
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Figure 44: Spring PHY 121 responses to the question in Figure 43; N=104 

 

Figure 45: Summer PHY 121 responses to the question in Figure 43; N=45 

 

Spring Semester

30° Blank Other

Summer 
Semester

30 other blank

Fall Semester 
(PHY 112 
students)

30 45 60 Other Blank
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Figure 46: Fall PHY 112 responses to the question in Figure 43; N=54 

(In the fall semester, PHY 121 students only answered a multiple choice version, so the 

112 response has been included for comparison instead. The two classes had similar results success 

rates, so this should be acceptable.) The instructors for these courses also noticed a significant 

difference between the preparedness of the summer semester and the fall and spring semester 

classes. This issue could be the focus of future studies. 

The final issue of note is the performance of the different classes. Without a doubt, PHY 

111 had the lowest success and PHY 131 had the highest; this is to be expected. PHY 112 and 

PHY 121, though, were on more even footing. PHY 112 students have the advantage of already 

taken a semester of physics, but PHY 121 students will have taken calculus and should have a 

higher level of mathematical ability. The results from the diagnostics show they are about even. In 

the spring semester, PHY 121 scored better than 112 on all 11 problems. In the fall, however, PHY 

112 actually scored higher than PHY 121 on several problems. The following is just one example 

where the 112 students had a more correct answers (ݔ ൌ ௬

௖௢௦௭
) than the 121 students. 

 

Figure 47: Question involving trigonometry on the fall diagnostic; Correct answer: ݔ ൌ ௬

ୡ୭ୱ ௭
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Figure 48: Fall PHY 112 responses to the question in Figure 47; N=54 

 

Figure 49: Fall PHY 121 responses to the question in Figure 48; N=98 

It should also be noted that all of the students in PHY 112 and PHY 121 that took the 

diagnostic were from the Polytechnic campus. The only Tempe students to take any diagnostic 

were the fall PHY 131 students, so there is no worry that this difference is caused by a difference 

between the two campuses. These results are not especially surprising or useful for this thesis, but 

it is an interesting result nonetheless. 

Fall PHY 112

y/cosz cosz/y ycosz

2y other blank

Fall PHY 121

y/cosz cosz/y ycosz

2y other blank
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Conclusion 

It is well documented that there are many areas of mathematics that physics students 

struggle with. This thesis, as well as many other papers, have documented student difficulties with 

algebra, vectors, and trigonometry. Despite being vital to all physics courses, many students are 

not able to solve basic right triangle trigonometry problems. A substantial number of students 

struggle with the most basic vector addition and direction problems. Many students do not know 

or do not consider some of the algebraic tools that they may need to solve problems, such as the 

distributive property. Symbolic notation and word problems also seem to make otherwise easy 

problems more complex. Finally, there is evidence that many of students’ mistakes are just the 

result of carelessness. 

There are many strategies that students use to solve these math problems, some more 

successful than others. When solving vector problems, considering the component method 

provides better results than the arrow (or tip-to-tail) method in both addition and direction 

problems. In addition, when solving trigonometry problems, it seems that experience and comfort 

with the trigonometric functions yields far better results than simply memorizing SOH CAH TOA. 

Lastly, simply reviewing one’s work has the potential to eliminate up to 25% of errors. 

In conclusion, there are many areas of mathematics that students struggle with, including 

vectors, trigonometry, and algebra. However, there are some empirically tested methods and ideas 

that students can use to improve their performance on these types of problems. With further 

research, some of the ideas outlined in this thesis could be used to develop effective instructional 

aids to help students understand and use the math necessary to solve problems in physics.  
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