Students' Ideas in Upper-Level Thermal Physics

David E. Meltzer Arizona State University

Supported in part by U.S. National Science Foundation Grant Nos. DUE 9981140, PHY 0406724, PHY 0604703, and DUE 0817282

Collaborators

Tom Greenbowe (Iowa State University; Chemistry) John Thompson (U. Maine; Physics) Michael Loverude (California State U., Fullerton; Physics) Warren Christensen (North Dakota State U.; Physics)

Funding

NSF Division of Undergraduate Education NSF Division of Physics 1. Initial [first-day] ideas found among upperlevel students, similar or identical to those found among introductory students.

Work

- Many students believe either that "no work" or *positive* work is done on the system during an expansion, rather than negative work.
- Students often fail to recognize that a system loses energy through work done in an expansion, or that a system gains energy through work done in a compression.

Molecular Motion

 Many students believe that molecular kinetic energy can increase or decrease during an *isothermal* process in which an ideal-gas system is heated.

(Introductory students often said that intermolecular collisions lead to net increases in kinetic energy and/or temperature.)

Isothermal Processes

- Most students do not recognize that energy transfers must occur (through heating) in a quasistatic isothermal expansion.
- (Students often do not recognize that a thermal reservoir does *not* undergo temperature change even when acquiring energy.)

State Functions

- Students seem comfortable with the state function concept within the context of energy, temperature, and volume, but *not* entropy.
- As do introductory students, upper-level students overgeneralize the state function concept, applying it inappropriately to heat and work.

Net Work and Net Heat Transfer

- Many students believe that heat transfers and/or work done in different processes linking common initial and final states must be equal.
- Students often believe that that net heat transfer in a cyclic process must be zero since $\Delta T = 0$, and that net work done must be zero since $\Delta V = 0$.

2. Ideas found among upper-level students, different from or not probed in introductory students.

Second Law

- In contrast to introductory students, upper-level students are comfortable with the idea of increasing total entropy. However, they share with them the belief that "system" entropy must increase.
- Most upper-level students are initially able to recognize that "perfect heat engines" (i.e., 100% conversion of heat into work) violate the second law, but...
- Most upper-level are initially unable to recognize that engines with greater than ideal ("Carnot") efficiency also violate the second law.

Entropy in Cyclic Processes

- After (special) instruction, most upper-level students recognize impossibility of super-efficient engines, but still have difficulties understanding cyclic-process requirement of $\Delta S = 0$; many also still confused about $\Delta U = 0$.
- On cyclic process questions involving heat engines, most (60%) upper-level students claim that net change in entropy is *not* zero, because they apply ΔS = ΣQ/T even when the process is not reversible; also, they ignore the state-function property of entropy which says ΔS = 0 since initial and final states are identical.

Free Expansion and Equilibrium

- Even after extensive work on free-expansion processes, upper-level students show poor performance (< 50% correct)
 - frequent errors: belief that temperature or internal energy must change, work is done, etc.
 - difficulties with first-law concepts prevented students from realizing that *T* does not change
- When analyzing changes in available microstates during approach to equilibrium, students often tend to ignore the fact that when equilibrium is reached, changes must cease.

Summary

- Many upper-level students initially share key conceptual difficulties manifested by introductory students
- Certain difficulties persist even after extensive instruction in upper-level courses.