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Our Goal: Investigate learning difficulties
in thermodynamics in both chemistry and

physics courses

• First focus on students’ initial exposure to
thermodynamics (i.e., in chemistry courses), then follow
up with their next exposure (in physics courses).

• Investigate learning of same or similar topics in two
different contexts (often using different forms of
representation).

• Devise methods to directly address these learning
difficulties.

• Test materials with students in both courses; use
insights gained in one field to inform instruction in the
other.



Outline

1. The physics/chemistry connection

2. First-semester chemistry:
– state functions
– heat, work, first law of thermodynamics

3. Second-semester physics:
– heat, work, first law of thermodynamics
– cyclic process

4. Second-semester chemistry:
– second law of thermodynamics

– Gibbs free energy



Initial Hurdle:
 Different approaches to thermodynamics

in physics and chemistry

• For physicists:
– Primary (?) unifying concept is transformation of internal

energy E of a system through heat absorbed and work
done;

– Second Law analysis focuses on entropy concept, and
analysis of cyclical processes.

• For chemists:
– Primary (?) unifying concept is enthalpy H [H = E + PV]

(∆H = heat absorbed in constant-pressure process)
– Second law analysis focuses on free energy (e.g., Gibbs

free energy G = H – TS)



How might this affect physics instruction?

• For many (most?) physics students, initial ideas
about thermodynamics are formed during
chemistry courses.

• In chemistry courses, a particular state function
(enthalpy) comes to be identified -- in students’
minds -- with heat in general, which is not a state
function.



Sample Populations

• CHEMISTRY [N = 426]: Calculus-based course;
first semester of two-semester sequence. Written
diagnostic administered after completion of lectures and
homework regarding heat, enthalpy, internal energy, work,
state functions, and first law of thermodynamics; also, small
number of student interviews.

• PHYSICS [N = 186]: Calculus-based course;
second semester of two-semester sequence.
Written diagnostic administered after completion of lectures
and homework regarding heat, work, internal energy, state
functions, and first law of thermodynamics.



Initial Research Objective:  How well do
students understand the “state function” concept?

Diagnostic Strategy: Examine two different processes
leading from state “A” to state “B”:
– What is the same about the two processes?
– What is different about the two processes?

• How well do students distinguish between changes in
state functions such as internal energy (same for any
process connecting states A and B), and process-
dependent quantities (e.g., heat [Q] and work [W])?

• Can students identify temperature as a prototypical
state function?



Results of Chemistry Diagnostic:
Question #1a and 1b

    Is the net change in [(a) temperature ∆T; (b) internal energy ∆E] of the
system during Process #1 greater than, less than, or equal to that
during Process #2? [Answer: Equal to]

∆T  during Process #1 is:
greater than: …….61%
less than:…………..3%       ∆T  during Process #2.
equal to:…………..34%

∆∆E  during Process #1 is:

greater than: …….51%
less than:…………..2%       ∆E  during Process #2.
equal to:…………..43%

Students answering correctly that both ∆∆T and ∆∆E are equal:  20%



Common Basic Misunderstandings
(chemistry students)

• No clear concept of “state” or “state function”

• No clear idea of what is meant by “net change”

• Difficulty interpreting standard diagrammatic
representations

• Association of “enthalpy” with “heat” even when
pressure is not constant



Most common errors
(chemistry students)

• Do not recognize that work done by the system is equal to P∆V
(≈ 70%)

• Do not recognize that work done on the system is negative if
P∆V > 0 (≈ 90%)

• Are unable to make use of the relation between Q, W, and ∆E
(i.e., First Law of Thermodynamics) (≈ 70%)

• Believe that W ∝ ∆E regardless of ∆V (≈ 40%)

• Believe that Q ∝ ∆E regardless of ∆V (≈ 40%)

• Believe that Q ∝ ∆V regardless of ∆E (≈ 20%)



Results of Physics Diagnostic:
Question #1

Is W for Process #1 greater than, less than, or
equal to that for Process #2? [Answer: greater than]

Greater than:  73%
Less than:        2%
Equal to:        25%

    [25% of the class cannot recognize that work done by
the system depends on the process, or that “work
equals area under the p-V curve.”]



Results of Physics Diagnostic:
Question #2

Is Q for Process #1 greater than, less than, or equal
to that for Process #2? [Answer: greater than]

Greater than: 56%
Less than:     13%
Equal to:        31%

    [Most students who answer “equal to” explicitly state that
heat absorbed by the system is independent of the
process]



Results of Physics Diagnostic:
Question #3

Can you draw another path for which Q is larger than
either Process #1 or Process #2? [Answer: Yes]

Yes [and draw correct path with correct explanation]: …15%
Yes [and draw correct path with incorrect explanation]: . 36%
Yes [and draw incorrect path]: ………………………15%
No, not possible: ………………………………29%
No response: …………………………………….6%



Most common errors
(physics students)

• Q and/or W are path independent  (≈ 30%)

• larger pressure ⇒⇒ larger Q (≈ 15%)

• Q = W  [or : Q ∝W ]  (≈ 15%)

• Q = -W (≈ 10%)



Summary results of preliminary study

• Most first-semester chemistry students in our
sample lack rudimentary understanding of
thermodynamic concepts.

• Most physics students in our sample either (1)
misunderstand process-dependent nature of work
and/or heat, or (2) do not grasp process-
independent nature of ∆E (= Q – W), or both (1)
and (2).



Follow-up study: Second-semester
Chemistry students

• Course covered standard topics in chemical
thermodynamics:
– Entropy and disorder
– Second Law of Thermodynamics: ∆Suniverse [= ∆Ssystem+ ∆Ssurroundings] ≥ 0

– Gibbs free energy: G = H - TS

– Spontaneous processes: ∆GT,P  < 0

– Standard free-energy changes

• Written diagnostic administered to 47 students (11%
of class) last day of class.

• In-depth interviews with eight student volunteers



Previous Investigations of Learning in
Chemical Thermodynamics

(upper-level courses)

• A. C. Banerjee, “Teaching chemical equilibrium and
thermodynamics in undergraduate general chemistry
classes,” J. Chem. Ed. 72, 879-881 (1995).

• M. F. Granville, “Student misconceptions in
thermodynamics,” J. Chem. Ed. 62, 847-848 (1985).

• P. L. Thomas, and R. W. Schwenz, “College physical
chemistry students’ conceptions of equilibrium and
fundamental thermodynamics,”    J. Res. Sci. Teach.
35, 1151-1160 (1998).



Student Interviews

• Eight student volunteers were interviewed within
three days of taking their final exam.

• The average course grade of the eight students
was above the class-average grade.

• Interviews lasted 40-60 minutes, and were
videotaped.

• Each interview centered on students “talking
through” a six-part problem sheet.

• Responses of the eight students were generally
quite consistent with each other.



Students’ Guiding Conceptions
(what they “know”)

• ∆H is equal to the heat absorbed by the
system.

• “Entropy” is synonymous with “disorder”

• Spontaneous processes are characterized by
increasing entropy

• ∆G = ∆H - T∆S

• ∆G must be negative for a spontaneous
process.



Difficulties Interpreting Meaning of
“∆G”

• Students often do not interpret “∆G < 0” as meaning
“G is decreasing” (nor “∆G > 0” as “G is
increasing”)

• The expression “∆G” is frequently confused with “G”
– “∆G < 0” is interpreted as “G is negative,” therefore,

conclusion is that “G must be negative for a
spontaneous process”

– Frequently employ expression “∆∆G [or ∆∆S] is
becoming more negative” (or “more positive”)



Examples from Interviews

Q: Tell me again the relationship between G and
“spontaneous”?

Student #7: I guess I don’t know, necessarily, about G; I
know ∆G.

Q: Tell me what you remember about ∆G.

Student #7: I remember calculating it, and then if it was
negative then it was spontaneous, if it was positive,
being nonspontaneous.

Q: What does that tell you about G itself. Suppose ∆G is
negative, what would be happening to G itself?

Student #7: I don’t know because I don’t remember the
relationship.



Student Conception: If the process is
spontaneous, G must be negative.

Student #1: If it’s spontaneous, G would be negative . . .
But if it wasn’t going to happen spontaneously, G
would be positive. At equilibrium, G would be zero . . .
if G doesn’t become negative, then it’s not
spontaneous. As long as it stays in positive values, it
can decrease, but [still be spontaneous].

Student #4: Say that the Gibbs free energy for the
system before this process happened . . . was a
negative number . . . [then] it can still increase and be
spontaneous because it’s still going to be a negative
number as long as it’s increasing until it gets to zero.



Students’ confusion:
apparently conflicting criteria for spontaneity

• ∆GT,P < 0 criterion, and equation ∆G = ∆H -
T∆S, refer only to properties of the system;

• ∆Suniverse > 0 refers to properties outside the
system;

→→ Consequently, students are continually
confused as to what is the “system” and what
is the “universe,” and which one determines
the criteria for spontaneity.



Student #2: I assume that ∆S [in the equation ∆G = ∆H -
T∆S] is the total entropy of the system and the
surroundings.

Student #3: “ . . . I was just trying to recall whether or not
the surroundings have an effect on whether or not it’s
spontaneous.”

Student #6: “I don’t remember if both the system and
surroundings have to be going generally up . . . I don’t
know what effect the surroundings have on it.”



Difficulties related to mathematical
representations

• There is confusion regarding the fact that in the
equation ∆G = ∆H - T∆S, all of the variables refer
to properties of the system (and not the
surroundings).

• Students seem unaware or unclear about the
definition of ∆G (i.e., ∆G = Gfinal – Ginitial)

• There is great confusion introduced by the
definition of standard free-energy change of a
process:

∆G ° = ∑n ∆G f°(products) - ∑m ∆G f°(reactants)



Lack of awareness of constraints and
conditions

• There is little recognition that ∆H equals heat
absorbed only for constant-pressure processes

• There appears to be no awareness that the
requirement that ∆G < 0 for a spontaneous
process only holds for constant-pressure,
constant-temperature processes.



Overall Conceptual Gaps

• There is no recognition of the fact that change in G
of the system is directly related to change in S of
the universe (= system + surroundings)

• There is uncertainty as to whether a spontaneous
process requires entropy of the system or entropy
of the universe to increase.

• There is uncertainty as to whether ∆G < 0 implies
that entropy of the system or entropy of the
universe will increase.



Summary

• In our sample, the majority of students held
incorrect or confused conceptions regarding
fundamental thermodynamic principles following
their introductory courses in physics and
chemistry.

• The tenacity and prevalence of these conceptual
difficulties suggest that instruction must focus
sharply upon them to bring about significant
improvements in learning.


