Measurement and Characteristics of Evidence-Based Instruction in Physics

David E. Meltzer

Arizona State University

NSF DUE #1256333, WIDER: EAGER: Recognizing, Assessing, and Enhancing Evidence-Based Instructional Practices in STEM at Arizona State University, Polytechnic; PI: D. E. Meltzer; Co-PIs: Y. Kang, M. Zandieh

Common Characteristics of Research-Based Active-Learning Instruction in Physics

References: D. E. Meltzer and R. K. Thornton, American Journal of Physics 80, 478 (2012); J. P. Mestre, Physics Education 36, 44 (2001).

- Instruction is informed and explicitly guided by research regarding students' pre-instruction knowledge state and learning trajectory, including:
 - Specific learning difficulties related to particular physics concepts
 - Specific ideas and knowledge elements that are potentially productive and useful
 - Students' beliefs about what they need to do in order to learn
 - 4. Specific learning behaviors
 - 5. General reasoning processes
- B. Specific student ideas are elicited and addressed
- C. Students are encouraged to "figure things out for themselves"
- Students engage in a variety of problem-solving activities during class time
- E. Students express their reasoning explicitly
- F. Students often work together in small groups
- G. Students receive rapid feedback in the course of their investigative or problem-solving activity
- Qualitative reasoning and conceptual thinking are emphasized
- Problems are posed in a wide variety of contexts and representations
- Instruction frequently incorporates the use of actual physical systems in problem solving
- Instruction recognizes the need to reflect on one's own problem-solving practice
- Instruction emphasizes linking of concepts into wellorganized hierarchical structures
- Instruction integrates both appropriate content (based on knowledge of students' thinking) and appropriate behaviors (requiring active student engagement)

Related Notes:

- There exists no clear quantitative measure of how, and in what proportion, the various characteristics of effective instruction need be present in order to make instruction actually effective.
 - ➤ For example, would a score of "4 out of 4" on characteristics *E, F, G,* and *H* on the above list outweigh a score of (e.g.,) "3 out of 4" on characteristics *A, B, C,* and *D?*
- Instructional developers gather and analyze evidence on specific instructional implementations of specific curricula, but not (in general) on the specific characteristics enumerated above
- Firm evidence of effective instructional practice always occurs in the context of a large set of tightly interlinked characteristics, each characteristic (apparently) closely dependent on the others for overall instructional success.

How are Research-Based Physics Instructional Methods Assessed?

Reference: Meltzer and Thornton (2012): Compendium of \approx 30 research-validated instructional methods/materials in physics

Each method/material was examined to determine which instruments and techniques were used to provide evidence of instructional effectiveness

Types of Diagnostic Instruments

"Standardized" surveys: ≈20-40 items, usually multiple-choice, qualitative (non-algebraic, non-numerical); Example: Force Concept Inventory (FCI)

Researcher-constructed free-response questions: qualitative emphasis; fewer than 8 items; may or may not require student explanations; Examples: University of Washington assessment items; University of Minnesota "context-rich" problems

Instructor-constructed course assessments: quizzes, exams, homework, grades; emphasis on quantitative and algebraic problem-solving

Comparison Groups

Local: compare to similar courses at home institution that use standard instruction

External: compare to similar courses/student populations at other institutions

National baseline: compare to previously published data reflecting performance in representative equivalent courses at multiple institutions

Diagnostic Survey Instruments

Frequently used

- Force Concept Inventory (FCI)
- Force and Motion Conceptual Evaluation (FMCE)

Occasionally used:

- Conceptual Survey in Electricity and Magnetism (CSEM)
- Brief Electricity and Magnetism Assessment (BEMA)

Rarely used:

- Electric Circuits Concept Evaluation (ECCE)
- Mechanics Baseline Test (MBT)
- Colorado Upper-Division Electrostatics Diagnostic Quiz [non-MC] (CUE)
- Quantum Mechanics Visualization Instrument (QMVI)
- Quantum Mechanics Assessment Tool [non-MC] (QMAT)
- Quantum Mechanics Conceptual Survey (QMCS)

Other Outcomes Assessed

Attitudes and beliefs (e.g., student ideas about how best to learn physics); Examples: Redish , Saul, and Steinberg (1998); Adams et al. (2006)

Facility with physics practices (e.g., ability to design and execute experiments); Example: Etkina and Van Heuvelen (2007)

Use of Pre-Instruction Tests to Predict Student Course Performance

Halloun and Hestenes (1985) administered the "Mechanics Diagnostic Test" (early version of FCI) and a mathematics diagnostic test in general physics courses at Arizona State University

- Course performance determined by scores on class exams
- Examined both algebra- and calculus-based courses that used traditional instruction

Findings:

- Scores on physics concept pretest and on math skills pretest were highly correlated with course performance, but nearly uncorrelated with each other (i.e., they were independent factors)
- 2. Students with *combined* physics + math pretest scores < 43% had only 5% probability of earning course grade over C

Mean physics pretest scores for students earning various letter grades (calculus-based physics, *N* = 192, 16% earn A's):

A: 63%

B: 55%

C: 47%

D/F: 42%

Comparison #1: Large Western State University

Mean FCI pretest scores for students earning various letter grades (calculus-based physics, *N* = 412, 24% earn A's):

A: 70%

B: 54%

C: 45%

D/F: 37%

Comparison #2: Arizona State University (2012-2013) [this work; evidence-based instruction]

Mean FCI pretest scores for students earning various letter grades (calculus-based physics, N = 107, 32% earn A's):

A: 57%

B: 41%

C: 41%

D/F: 32%

Correlations Between Course Grade and Diagnostic Pretest Score

Math skills: +0.51 (ASU, 1985; calculus-based, N = 478)

Lawson scientific reasoning test: +0.50 (Small university, algebrabased. N = 238)

Physics concepts:

+0.55 (ASU, 1985, calculus-based, MDT, N = 478)

+0.34 (U. Minnesota, 1997-99, calculus-based, FCI, N = 1645)

+0.48 (Small university, 2006-13, algebra-based, FCI, N = 238)

What Grade is Predicted by FCI Pre-Test Score?

Study #1: Henderson (2002), U. of Minnesota

 $(N_{total} = 2020; 21\% \text{ earn A's; pre} \approx 45\%, \text{ post} \approx 68\%; <g> <math>\approx 0.42)$

Pretest Score

Low (0-30%) [N = 663] A: 10% B: 30% C: 46% High (63-100%) [N = 349] A: 47% B: 40% C: 9%

Study #2: Arizona State University (2012-13) [this work]

 $(N_{total} = 107; 32\% \text{ earn A's; pre} \approx 45\%, \text{ post} \approx 71\%; <g> \approx 0.47)$

Drotost Coore

Low (0-30%) [N = 34] A: 12% B: 44% C: 26% High (63-100%) [N = 23] A: 65% B: 22% C: 13%

Summary

- •There is a strong correlation between final course grade and scores on various pre-instruction diagnostic tests
- •A strong correlation clearly persists in the presence of evidencebased instruction
- •Pre-instruction tests may be able to give "early warnings" in cases where special intervention might be helpful
- •Key question remains: What are primary factors underlying "most successful" student cases of low pre-score/high grade?

Issues of Concern

Most assessments done via multiple-choice survey instruments

- (relatively) easy to implement
- limited insight into student thinking: imprecise, and lack
- limited coverage of instructional intervention (narrow scope of topics)

Most non-survey assessments are unpublished

Most components of each collection of materials go unassessed

Exception: University of Washington; majority of UW
 Tutorials undergo extensive cycle of iterative assessment and validation