Student understanding of entropy and the second law of thermodynamics in an introductory physics course *

Warren Christensen and David E. Meltzer Iowa State University PERG

*Supported in part by NSF grants #DUE-9981140 and #PHY-0406724.

Thermodynamics Project

- Objectives: (a) To investigate students' qualitative understanding of entropy, the second law of thermodynamics, and related topics in a second-semester calculus-based physics course*; (b) To develop research-based curricular materials
- In collaboration with John Thompson at the University of Maine on investigations in an upperlevel undergraduate thermal physics course

*Previous work on related topics: M. Cochran (2002)

Pretest - Fall 2004

Second semester calculus-based introductory physics course

- \approx 90% of students have taken high school physics
- \approx 90% have completed college chemistry course where entropy is discussed
- A series of written questions was administered before instruction to assess students' reasoning regarding entropy and the second law of thermodynamics
 - Question 3: Change in entropy during a spontaneous process

Spontaneous Process Question

3. For each of the following questions consider a system undergoing a naturally occurring ("spontaneous") process. The system can exchange energy with its surroundings.

Spontaneous Process Question

- 3. For each of the following questions consider a system undergoing a naturally occurring ("spontaneous") process. The system can exchange energy with its surroundings.
- A. During this process, does the entropy of the <u>system</u> $[S_{system}]$ *increase*, *decrease*, or *remain the same*, or is this *not determinable* with the given information? *Explain your answer*.
- B. During this process, does the entropy of the <u>surroundings</u> [S_{surroundings}] *increase, decrease,* or *remain the same*, or is this *not determinable* with the given information? *Explain your answer.*
- C. During this process, does the entropy of the system *plus* the entropy of the surroundings $[S_{system} + S_{surroundings}]$ *increase, decrease, or remain the same, or is this not determinable* with the given information? *Explain your answer.*

Responses to Entropy Question 2004 Introductory Physics Pretest Results (N=289)

	Increase	Decrease	Remain the same	Not determinable
S _{system}	29%	19%	10%	39%
S _{surroundings}	24%	18%	11%	43%
S _{total}	15%	2%	71%	8%

Pretest Results [N = 289]

- 71% of students said that the total entropy (system + surroundings) would remain the same
- 31% of student responses were consistent with some sort of "conservation" principle
 - e.g., A. Increases, B. Decreases, and so C. Stays the same

Pretest Results [N = 289]

 15% of students indicated that the total entropy (*system* + *surroundings*) would increase

BUT...

• Only 4% gave a correct response for all three parts

Final Exam Question [N = 539]

A question similar to the pretest was administered on the final exam.

Final Exam Question [N = 539]

A subsystem A is in thermal contact with its environment B, which together comprise an isolated system. Consider the following situations:

I. Entropy of system increases by 5 J/K; entropy of the environment decreases by 5 J/K.
II. Entropy of system increases by 5 J/K; entropy of the environment decreases by 3 J/K.
III. Entropy of system increases by 3 J/K; entropy of the environment decreases by 5 J/K.
IV. Entropy of system decreases by 3 J/K; entropy of the environment increases by 5 J/K.

Which of the above four situations can actually occur in the real world?

Pre- and Post-Instruction Comparison

- The results of the final-exam question are most directly comparable to the responses on part C of the pretest:
 - C. During this process, does the entropy of the system *plus* the entropy of the surroundings $[S_{system} + S_{surroundings}]$ *increase, decrease, or remain the same, or is this not determinable with the given information? Explain your answer.*

S _{TOT} stays the same			
Pretest	Final Exam		
71%	54%		

S _{TOT} increases			
Pretest	Final Exam		
15%	30%		

Correct answer

Interview Data [Fall 2004: N = 8; Spring 2005: N = 8]

- Hour-long interviews with student volunteers
 - conducted after instruction on all relevant material was completed
- Students asked to respond to several questions regarding entropy and the second law

Interview Results

- Nearly half asserted that total entropy could either increase *or* remain the same during spontaneous process
- Response options altered for Spring 2005 to allow for "increase or remain the same" response

Final Exam Question - Spring 2005

A subsystem *A* is in thermal contact with its environment *B* and they together comprise an isolated system that is undergoing an irreversible process. Consider the following situations:

- I. Entropy of system increases by 5 J/K; entropy of the environment decreases by 5 J/K.II. Entropy of system increases by 5 J/K; entropy of the environment decreases by 3 J/K.
- III. Entropy of system increases by 3 J/K; entropy of the environment decreases by 5 J/K.
- IV. Entropy of system decreases by 3 J/K; entropy of the environment increases by 5 J/K.

Which of the above four situations can actually occur?

Posttest responses

Conclusions

- Students appear to have an idea that the total entropy during a natural process remains unchanged ("conserved"?)
- Student confusion concerning the relationships among S_{system} , $S_{surroundings}$, and S_{total} during a naturally occurring process seems resistant to instruction