Peer-led instruction for a qualifying exam preparatory course or: How I learned to stop worrying and love the Ph.D. qualifying exam

> Warren Christensen Larry Engelhardt Iowa State University

Background on ISU Qual Exam

- All Ph.D. candidates are required to pass a comprehensive, written exam by the end of their second year of graduate school
- Two four-hour exams administered on a Tuesday and Thursday in August
 - Classical
 - Modern
- Tests may be passed in separate years

Previous qualifier prep course

Before the creation of this course...

There was nothing.

- A constant source of student frustration
- Initiative for this course was to address the complete lack of assistance for students preparing for the exam

Course goals

- We want to help students pass the test. (the primary goal is NOT to teach physics)
 - Discuss of problem-solving techniques
 - Close mentoring by experienced exam takers
 - Practice very specific test-taking strategies
 - Focus on the most important physics topics

The working assumption is that in order to pass, you must know and/or learn physics...

BUT

learning physics is a by-product of doing the things that are necessary to pass.

What does that mean?

- Graduate student perception: One can learn physics by reading textbooks...
 - BUT if you only read textbooks you are NOT going to pass the exam.
 - Let's have a race!!! (Ask Warren for story...)
 - Our course focuses almost exclusively on students working qualifier-level problems, because that will help them pass the test.

Not JUST working problems...

Issues with efficient studying

- Doing difficult problems independently can be inefficient
- Often, getting sidetracked on a single problem detail will cause hours of digression looking for an answer
 - Our solution students working in groups with experienced exam takers acting as TAs

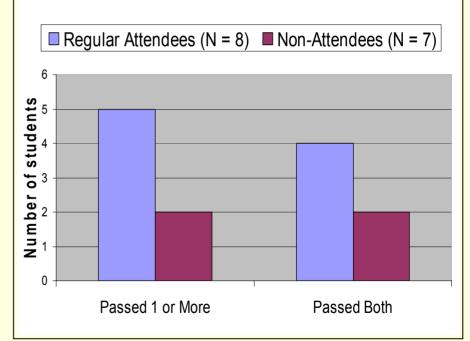
Weekly Schedule

- 1st meeting (one hour)
 - overview of the weekly topic (20 minutes)
 - students work actual qualifying exam problems in groups (40 minutes)
 - ≈ four problems are assigned as homework to be presented at the second meeting
- 2nd meeting (two hours)
 - Students take turns presenting assigned problems at the board

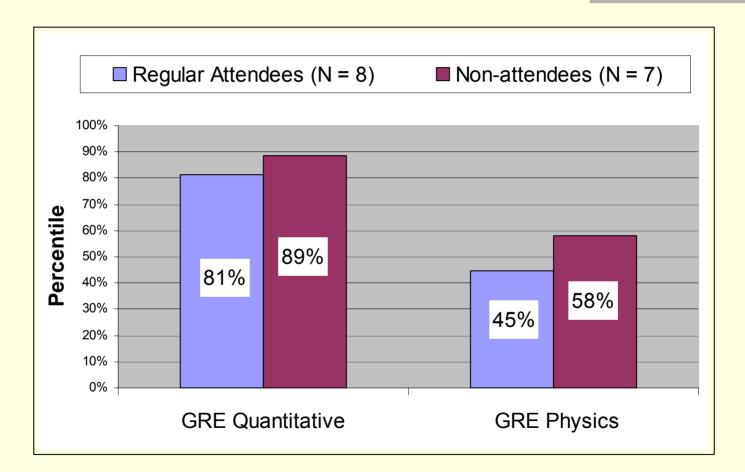
Not *JUST* working problems in groups...

Class Activities Inspired by Physics Education Research (PER)

Course Theme: Students working through problems in small groups, with a strong focus on qualitative analysis and reasoning Class Activities Inspired by Physics Education Research (PER)


- Class activities designed to address key issues identified in PER literature
 - problem solving techniques
 - structured problem-solving method
 - conceptual framework
 - anchor specific problem solution in broad context of fundamental physics principles
 - multiple representations
 - e.g. graphs, diagrams, "verbal", etc.
 - alternative solution methods
 - explore different solution pathways
- During the 2nd meeting students must address new questions and ideas and are forced to think on their feet

Passing the exam


- Practice Exams
 - four full-length exams of equal quality and complexity as the actual exams that we pieced together from various books
 - taken in a classroom with other students at 8 a.m. on Tuesday and Thursday mornings
- Focus only on exam topics at the appropriate level; not all of physics

Exam Score Data

- 37 total students took the exam
 - 17 first-year students
 - 5 only had to pass one
- \Rightarrow **15** in the sample
 - 8 regularly attended
 - 5 out of 8 passed at least one exam
 - 2 out 7 for nonattendees

Pre-instruction advantage?

Although the pass rate for attendees is much higher, it's likely that our students did not possess any pre-instruction advantage.

Conclusions

- We created and implemented a non-traditional course for qualifying exam preparation, using pedagogical innovations that we strongly feel are helping students pass the exam and learn physics.
- Feel free to visit the website:

http://www.public.iastate.edu/~wmchris/qual.html

APS FEd Spring Newsletter Article: <u>http://www.aps.org/units/fed/index.cfm</u>

Acknowledgments – Ngoc-Loan Nguyen and David Meltzer