Research, Innovation and Reform in Physics Education

David E. Meltzer Department of Physics and Astronomy Iowa State University

Supported in part by the National Science Foundation

Collaborator Mani K. Manivannan Southeastern Louisiana University

Undergraduate Student Peer Instructor Tina Tassara

Some fraction of students in introductory physics have always done "well"

- High-performing students seem to master concepts and problem-solving techniques, and do well in follow-up courses.
- The proportion of high-performing students varies greatly, depending on institution and student population.
- Many if not most students do not fall in the high-performing category.
- Even most high-performing students could benefit from improved instruction.

Goals of Improved Instruction

- Increase knowledge of physics concepts, and problem-solving ability, for majority of enrolled students (especially in introductory courses).
- Improve attitudes of students toward physics:
 - understanding of scientific process
 - enjoyment of physics instruction

Role of Physics Education Research

- Probe "alternative conceptions" of physical reality (misconceptions, preconceptions, etc.)
- Investigate particular conceptual stumbling blocks on road to understanding physics
- Explore differences between expert and novice problem solvers
- **** Apply research results to improve instruction!**

Probe "alternative conceptions" of physical reality (misconceptions, preconceptions, etc.)

"Misconceptions"/Alternative Conceptions

Student ideas about the physical world that conflict with physicists' views

- Widely prevalent; there are some particular ideas that are almost *universally* held by beginning students
- Often very well-defined -- not merely a "lack of understanding," but a very specific idea about what *should* be the case (but in fact is not)
- Often -- usually -- <u>very</u> tenacious, and hard to dislodge; Many repeated encounters with conflicting evidence required

Examples:

- An object in motion *must* be experiencing a force
- A given battery always produces the same current in any circuit
- Electric current gets "used up" as it flows around a circuit

Investigate particular conceptual stumbling blocks on road to understanding physics

Methods of Assessing Conceptual Understanding

• Conceptual surveys or "diagnostics": sets of written questions (short answer or multiple choice) emphasizing qualitative understanding (often given "pre" and "post" instruction)

e.g. "Force Concept Inventory"; "Force and Motion Conceptual Evaluation"; "Conceptual Survey of Electricity"

- Students' written explanations of their reasoning
- Interviews with students

e.g. "individual demonstration interviews" (U. Wash.): students are shown apparatus, asked to make predictions, and then asked to explain and interpret results in their own words

Learning Difficulties Explored by Research

- Difficulty in transforming among diverse representations (verbal, mathematical, diagrammatic, graphical, etc.) of physical concepts
- Weakness in "functional" understanding (i.e., making use of a concept to solve a problem)
- Difficulty in transforming among contexts (e.g., from "textbook" problems to "real" problems)

Difficulties in Translating Among Representations

Example: Elementary Physics Course at Southeastern Louisiana University, targeted at elementary education majors.

 Newton's second law questions, given as posttest (from "Force and Motion Conceptual Evaluation"; nearly identical questions posed in graphical, and "natural language" form):

% correct on "force graph" questions: 56% % correct on "natural language" questions: 28%

This slide shows the force graphs from the FMCE

This shows the force sled problems

Changing Contexts: Textbook Problems and "Real" Problems

- "Standard" Textbook Problem:
- [textbook problem]

- "Context-Rich" Problem (K. and P. Heller):
- [example of context-rich talk]

Testing "Functional" Understanding Applying the concepts in unfamiliar situations: Research at the University of Washington

- Even students with good grades may perform poorly on qualitative questions in unexpected contexts
- Performance both before *and after* standard instruction is essentially the same
- **Example:** This question has been presented to over 1000 students in algebra- and calculus-based lecture courses. Whether before <u>or</u> after instruction, fewer than 15% give correct responses.
- [five bulbs problem]

Caution: Careful probing needed!

- It is very easy to overestimate students' level of understanding.
- Students *frequently* give correct responses based on incorrect reasoning.
- Students' written explanations of their reasoning are powerful diagnostic tools.
- Interviews with students tend to be profoundly revealing ... and extremely surprising (and disappointing!) to instructors.

[these are in Lincoln talk]

2 slides of interview transcript [explain MBT #21]

Explore differences between expert and novice problem solvers

Results of Research: Problem Solving

Strong tendency for students to adopt various suboptimal strategies:

- start immediately with equations (searching for the unknown) instead of conducting a qualitative analysis
- work backward from desired unknown, instead of beginning with general principles and working forward from given information
- fail to identify "implicit" procedural aspects omitted from textbook presentations (e.g., *when* to use a particular equation, instead of some other one)
- fail to use multiple representations (diagrams, graphs, etc.) to help analyze problem

Cf. David P. Maloney, Research on Problem Solving: Physics (1994)

But ... some students learn efficiently . . .

- Highly successful physics students (e.g., future physics instructors!) are *"active learners."*
 - they continuously probe their own understanding of a concept (pose their own questions; examine varied contexts; etc.)
 - they are sensitive to areas of confusion, and have the confidence to confront them directly
- Great majority of students are unable to do efficient "active learning" on their own: they don't know "which questions they need to ask"
 - they require considerable prodding by instructors, aided by appropriate curricular materials
 - they need frequent confidence boosts, and hints for finding their way

Keystones of Innovative Pedagogy

- Instruction recognizes and deliberately elicits – students' preexisting "alternative conceptions."
- To encourage active learning, students are led to engage in deeply thought-provoking activities requiring intense mental effort. ("Interactive Engagement.")
- The "process of science" is used as a means for *learning* science: "inquiry-based" learning. (Physics as exploration and discovery: students are not "told" things are true; instead, they are guided to *"figure them out for themselves."*)

"Interactive Engagement"

"Interactive Engagement" methods require an active learning classroom:

- Very high levels of interaction between students and instructor
- Collaborative group work among students during class time
- <u>Intensive</u> active participation by students in focused learning activities during class time

Inquiry-based Learning/ "Discovery" Learning

Pedagogical methods in which students are guided through investigations to "discover" concepts

- Targeted concepts are generally *not* told to the students in lectures before they have an opportunity to investigate (or at least *think* about) the idea
- Can be implemented in the instructional laboratory ("active-learning" laboratory) where students are guided to form conclusions based on evidence they acquire
- Can be implemented in "lecture" or recitation, by guiding students through chains of reasoning utilizing printed worksheets

New Approaches to Instruction on Problem Solving

- **A. Van Heuvelen**: Require students to construct multiple representations of problem (draw pictures, diagrams, graphs, etc.)
- **P. and K. Heller:** Use "context rich" problems posed in natural language containing extraneous and irrelevant information; teach problem-solving strategy
- **F. Reif et al.:** Require students to construct problemsolving strategies, and to critically analyze strategies
- **P. D'Allesandris:** Use "goal-free" problems with no explicitly stated unknown
- W. Leonard, R. Dufresne, and J. Mestre: Emphasize student generation of qualitative problemsolving strategies

New Instructional Methods: Active-Learning Laboratories

- "Microcomputer-based Labs" (P. Laws, R. Thornton, D. Sokoloff): Students make predictions and carry out detailed investigations using real-time computer-aided data acquisition, graphing, and analysis. "Workshop Physics" (P. Laws) is **entirely** lab-based instruction.
- "Socratic-Dialogue-Inducing" Labs (*R. Hake*): Students carry out and analyze activities in detail, aided by "Socratic Dialoguist" instructor who asks leading questions, rather than providing ready-made answers.

New Instructional Methods: Active Learning Text/Workbooks

- *Electric and Magnetic Interactions*, R. Chabay and B. Sherwood, Wiley, 1995.
- Understanding Basic Mechanics, F. Reif, Wiley, 1995.
- *Physics: A Contemporary Perspective*, R. Knight, Addison-Wesley, 1997-8.
- Six Ideas That Shaped Physics, T. Moore, McGraw-Hill, 1998.

New Instructional Methods: University of Washington Model *"Elicit, Confront, Resolve"*

Most thoroughly tested and research-based physics curricular materials; based on 20 years of ongoing work

- *"Physics by Inquiry":* 3-volume lab-based curriculum, primarily for elementary courses, which leads students through extended intensive group investigations. Instructors provide "leading questions" only.
- *"Tutorials for Introductory Physics":* Extensive set of worksheets, designed for use by general physics students working in groups of 3 or 4. Instructors provide guidance and probe understanding with "leading questions." Aimed at eliciting deep conceptual understanding of frequently misunderstood topics.

New Active-Learning Curricula for High-School Physics

- "Minds-On Physics" (U. Mass. Physics Education Group)
- Comprehensive Conceptual Curriculum for Physics [C³P] (R. Olenick)
- PRISMS (Physics Resources and Instructional Strategies for Motivating Students) (R. Unruh)

New Instructional Methods: Active Learning in Large Classes

- "Active Learning Problem Sheets" (A. Van Heuvelen): Worksheets for in-class use, emphasizing multiple representations (verbal, pictorial, graphical, etc.)
- *"Interactive Lecture Demonstrations"* (R. Thornton and D. Sokoloff): students make written predictions of outcomes of demonstrations.
- *"Peer Instruction"* (E. Mazur): Lecture segments interspersed with challenging conceptual questions; students discuss with each other and communicate responses to instructor.
- *"Workbook for Introductory Physics"* (D. Meltzer and K. Manivannan): combination of multiple-choice questions for instantaneous feedback, and sequences of free-response exercises for in-class use.

Active Learning in Large Classes

- Use of "Flash-card" communication system to obtain instantaneous feedback from entire class;
- Cooperative group work using carefully structured free-response worksheets -- "Workbook for Introductory Physics"
- Drastic de-emphasis of lecturing
- **Goal:** Transform large-class learning environment into "office" learning environment (i.e., instructor + one or two students)

This is photo from Eric's book

This is title page of Workbook

This is page 1 of WB

This is page 19 of WB

• This is gravity page

Effectiveness of New Methods:(I)

Results on "Force Concept Inventory" (diagnostic exam for mechanics concepts) in terms of "g": overall learning gain (posttest - pretest) as a percentage of **maximum possible gain**

 Survey of 4500 students in 48 "interactive engagement" courses showed g = 0.48 ± 0.14
--> highly significant improvement compared to non-Interactive-Engagement classes (g = 0.23 ± 0.04)

(R. Hake, Am. J. Phys. 66, 64 [1998])

 Survey of 281 students in 4 courses using "MBL" labs showed g = 0.34 (range: 0.30 - 0.40) (non-Interactive-Engagement: g = 0.18)

(E. Redish, J. Saul, and R. Steinberg, Am. J. Phys. 66, 64 [1998])

[the next slide was not shown; here for reference]

Effectiveness of New Methods: (II)

Results on "Force and Motion Conceptual Evaluation" (diagnostic exam for mechanics concepts, involving both graphs and "natural language")

Subjects: 630 students in three noncalculus general physics courses using "MBL" labs at the University of Oregon

Results (posttest; % correct):

	Non-MBL	MBL
Graphical Questions	16	80
Natural Language	24	80

(R. Thornton and D. Sokoloff, Am. J. Phys. 66, 338 [1998])

Effectiveness of New Methods: Conceptual Understanding (III)

University of Washington, Physics Education Group

RANK THE BULBS ACCORDING TO BRIGHTNESS. ANSWER: A=D=E > B=C

[five bulbs in one circuit problem]

Results: Problem given to students in calculus-based course 10 weeks after completion of instruction. Proportion of correct responses is shown for:

Students in lecture class: 15% Students in "lecture + tutorial" class: 45%

(P. Shaffer and L. McDermott, Am. J. Phys. 60, 1003 [1992])

At Southeastern Louisiana University, problem given on final exam in algebra-based course using *"Workbook for Introductory Physics"*: more than 50% correct responses.

Challenges Ahead . . .

- Many (most?) students are comfortable and familiar with more passive methods of learning science. Active learning methods are always challenging, and frequently frustrating for students. Some (many?) react with anger.
- Active learning methods and curricula are not "instructor proof." Training, experience, and energy are needed to use them effectively.

Summary

- Much has been learned about how students learn physics, and about specific difficulties that are commonly encountered.
- Based on this research, many innovative instructional methods have been implemented that show evidence of significant learning gains.
- The process of improving physics instruction is likely to be endless: we will never achieve "perfection," and there will always be more to learn about the teaching process.

The next slide was not shown

Characteristics of "Deep" Understanding

- Understand and use general principles (e.g., conservation laws, symmetry, Newton's third law)
- Possess hierarchical, connected knowledge (e.g., interconnection among conservative forces, potential energy, work-energy theorem, etc.)
- Use qualitative understanding to structure and check problem solutions (e.g., estimate answer by ignoring small quantities)