Students' Ideas About Entropy and the Second Law of Thermodynamics*

Warren Christensen and David E. Meltzer Iowa State University PERG

*Supported in part by NSF grants #DUE-9981140 and #PHY-0406724.

Thermodynamics Project

- Objectives: (a) To investigate students' qualitative understanding of entropy, the second law of thermodynamics, and related topics in a second-semester calculus-based physics course*; (b) To develop research-based curricular materials
- In collaboration with John Thompson at the University of Maine on investigations in an upperlevel undergraduate thermal physics course

*Previous work on related topics: M. Cochran (2002)

Fall 2004 Course Design

- Primarily traditional physics instruction
 some use of a personal response system
- Thermodynamics was the last topic covered in the course
- Concepts concerning the 2nd Law were discussed in the context of heat engines during one lecture, and in a separate 30 minute lecture on the entropy of a system

Pretest

- A series of four questions was administered to nearly all recitations during the first week of class to assess students' understanding of concepts in calorimetry and thermodynamics.
 - Question 3: Change in entropy during a spontaneous process

Spontaneous Process Question

3. For each of the following questions consider a system undergoing a naturally occurring ("spontaneous") process. The system can exchange energy with its surroundings.

Spontaneous Process Question

- 3. For each of the following questions consider a system undergoing a naturally occurring ("spontaneous") process. The system can exchange energy with its surroundings.
- A. During this process, does the entropy of the <u>system</u> $[S_{system}]$ *increase*, *decrease*, or *remain the same*, or is this not determinable with the given information? **Explain your answer.**
- B. During this process, does the entropy of the <u>surroundings</u> $[S_{surroundings}]$ *increase, decrease,* or *remain the same*, or is this not determinable with the given information? *Explain your answer.*
- C. During this process, does the entropy of the system *plus* the entropy of the surroundings $[S_{system} + S_{surroundings}]$ *increase, decrease, or remain the same, or is this not determinable with the given information? Explain your answer.*

Responses to Entropy Question 2004 Introductory Physics Pretest Results (N=179)

	Increase	Decrease	Remain the same	Not determinable
S _{system}	30%	20%	9%	38%
S _{surroundings}	26%	18%	9%	40%
S _{total}	15%	1%	72%	8%

Blank responses omitted from the sample

Pretest Results [N = 179]

- 72% of students indicated that the total entropy (*system* + *surroundings*) would remain the same
- 34% of student responses were consistent with some sort of "conservation" principle
 - e.g., A. Increases, B. Decreases, and so C. Stays the same

Pretest Results [N = 179]

 15% of students indicated that the total entropy (*system* + *surroundings*) would increase

BUT...

• Only 4% gave a correct response for all three parts

Final Exam Question [N = 539]

A question similar to the pretest was administered on the final exam.

Final Exam Question [N = 539]

A subsystem A is in thermal contact with its environment B, which together comprise an isolated system. Consider the following situations:

I. Entropy of system increases by 5 J/K; entropy of the environment decreases by 5 J/K.
II. Entropy of system increases by 5 J/K; entropy of the environment decreases by 3 J/K.
III. Entropy of system increases by 3 J/K; entropy of the environment decreases by 5 J/K.
IV. Entropy of system decreases by 3 J/K; entropy of the environment increases by 5 J/K.

Which of the above four situations can actually occur in the real world?

Pre- and Post-Instruction Comparison

- The results of the final-exam question are most directly comparable to the responses on part C of the pretest:
 - C. During this process, does the entropy of the system *plus* the entropy of the surroundings $[S_{system} + S_{surroundings}]$ *increase, decrease, or remain the same, or is this not determinable with the given information? Explain your answer.*

S _{TOT} stays the same			
Pretest Final Exan			
72%	54%		

S _{TOT} increases				
Pretest Final Exam				
15%	30%			

Correct answer

Interview Data [N=8]

- We conducted hour-long interviews with student volunteers after the completion of the entire course.
- Students were asked to respond to a series of questions focusing on the properties of entropy in irreversible processes, the concept of entropy as a state function, and the second-law constraint on maximum efficiency of a heat engine.

Final Exam Question

A subsystem A is in thermal contact with its environment B, which together comprise an isolated system. Consider the following situations:

I. Entropy of system increases by 5 J/K; entropy of the environment decreases by 5 J/K.
II. Entropy of system increases by 5 J/K; entropy of the environment decreases by 3 J/K.
III. Entropy of system increases by 3 J/K; entropy of the environment decreases by 5 J/K.
IV. Entropy of system decreases by 3 J/K; entropy of the environment increases by 5 J/K.

Which of the above four situations can actually occur in the real world?

- A. I only
- B. II only
- C. III only
- D. II and III only
- E. II and IV only

Final Exam Question

S _{TOT} stays the same		S _{TOT} increases		
Pretest	Final Exam	Pretest	Final Exam	
72%	54%	15%	30%	

- 5 out of 8 students (63%) gave the correct answer (S_{TOT} increases) on the final exam question during interviews
- 3 students specifically stated that I, II, and IV were all possible answers, but chose "II and IV only" since they felt it was the best option offered

General Observations

- Students associated entropy with common textbook nomenclature, such as disorder (N = 3) and randomness (N = 3).
- 6 out of 8 students made a connection between heat transfer and entropy at some point during the interview.
- Previously reported 1st Law misconceptions* were observed and did, in some instances, contribute to incorrect responses concerning entropy.

*Loverude, Kautz, and Heron (2002); Meltzer (2004)

Comparison between Introductory and Upper-level Students

A nearly identical pretest was administered in an upper-level thermal physics course

Spontaneous Process Question

[Introductory-Course Version]

- 3. For each of the following questions consider a system undergoing a naturally occurring ("spontaneous") process. The system can exchange energy with its surroundings.
- A. During this process, does the entropy of the <u>system</u> $[S_{system}]$ *increase*, *decrease*, or *remain the same*, or is this not determinable with the given information? **Explain your answer.**
- B. During this process, does the entropy of the <u>surroundings</u> $[S_{surroundings}]$ *increase, decrease,* or *remain the same*, or is this not determinable with the given information? *Explain your answer.*
- C. During this process, does the entropy of the system *plus* the entropy of the surroundings $[S_{system} + S_{surroundings}]$ *increase, decrease, or remain the same, or is this not determinable with the given information? Explain your answer.*

[Correct Responses]	2004 Introductory Physics (Pretest) (N=179)		
S _{system}	38%		
S _{surroundings}	40%		
S _{total}	15%		

[Correct Responses]	2004 Introductory Physics (Pretest) (N=179)	2004 Thermal Physics (Pretest) (N=12)	
S _{system}	38%	50%	
S _{surroundings}	40%	50%	
S _{total}	15%	92%	

[Correct Responses]	2004 Introductory Physics (Pretest) (N=179)	2004 Thermal Physics (Pretest) (N=12)	2004 Thermal Physics (Post-Instruction Interviews) (N=17)	
			correct	with correct explanation
S _{system}	38%	50%	76%	47%
S _{surroundings}	40%	50%	88%	76%
S _{total}	15%	92%	100%	100%

[Correct Responses]	2004 Introductory Physics (Pretest) (N=179)	2004 Thermal Physics (Pretest) (N=12)	2004 Thermal Physics (Post-Instruction Interviews) (N=17)	
	- I		correct	with correct explanation
S _{system}	38%	50%	76%	47%
S _{surroundings}	40%	50%	88%	76%
S _{total}	15%	92%	100%	100%

Conclusions

- Students appear to have an idea that the total entropy during a natural process remains unchanged ("conserved"?)
- Student confusion concerning the relationships among S_{system} , $S_{surroundings}$, and S_{total} during a naturally occuring process seems very resistant to instruction