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Editor’s Note: This large-scale study (2141 students across 31 classes at 5 institutions with 8 
instructors) shows that students who score in the top and bottom quartiles of pretests are much 
more likely to earn grades in the top and bottom quartiles, respectively, compared to the chances 
that they will move between these quartiles. Physics instructors will want to consider the 
implications of these results.

Abstract

We have investigated the probabilities of earning high (top-quartile) and low (bottom-quartile) 
course grades in introductory university physics courses for students in two different groups: 
one, those who scored in the top quartile of their class on one of three diagnostic pretests, and the 
other composed of those who scored in the bottom quartile on the same test. The tests employed 
were the Force Concept Inventory (a physics concept test), the Lawson Test of Scientific 
Reasoning, and a newly developed mathematics test that includes only pre-college mathematics 
questions; all pretests were administered before or near the beginning of the course. Our 
investigation includes over 2000 students enrolled in 31 introductory physics classes taught by 
eight instructors at four universities. We found with 97% consistency that top-quartile scorers on 
any of the pretests were more likely to get high (top-quartile) grades and less likely to get low 
(bottom-quartile) grades than were bottom-quartile scorers on the same pretest. Top-quartile 
scorers on the pretests were, on average, four to six times as likely to receive high grades, and 
one-third to one-fifth as likely to receive low grades, compared to bottom-quartile scorers on the 
same pretests. These results are consistent with mathematical models of empirical data published 
by Salehi et al. (Phys. Rev. Phys. Educ. Res. 15(2), 020114 (2019)) and with their cautions regarding 
the potentially serious implications of these findings for the careers of poorly prepared college 
physics students.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

1
1
9
/5

.0
2
5
5
7
6
8



3 

 

I. INTRODUCTION 

For more than 90 years, researchers have investigated factors associated with student success 
in introductory college physics courses. Before 1955, such studies were rare.1,2 From the late 
1950s through the 1980s there were many investigations, most of which focused on 
mathematical and reasoning skills; students’ physics knowledge was sometimes examined as 
well.3,4,5,6,7,8,9,10,11,12,13,14,15,16 Typically, researchers would determine the correlation between 
college physics students’ final course or exam grades and their scores on various tests given 
before or at the beginning of instruction. Standardized tests such as the Scholastic Aptitude Test 
(SAT) or American College Testing (ACT) were sometimes used, while some investigators 
devised their own mathematics diagnostic tests.17,18,19 The reasoning skills tests were generally 
not standardized and often were assembled in ad hoc fashion by researchers drawing on test 
items (or variations) that had been developed by other investigators. With the 1992 publication of 
the mechanics concept test known as “Force Concept Inventory” (FCI), researchers gained 
another tool that was sometimes employed to assess students’ physics concept knowledge.20

 

In more recent years, the number of potentially influential factors examined has dramatically 
increased. A variety of demographic variables have been explored, including for example race, 
ethnicity, gender, and family educational background.21,22,23 Other potential factors occasionally 
examined include self-efficacy and other affective factors, spatial reasoning ability, “sense of 
belonging,” and students’ previous experience (or lack of it) in high school physics and math 
courses.24,25,26,27,28,29,30 The explanation for the continued interest in this topic is straightforward: 
If physics instructors can better understand the factors that lead to success in physics—and the 
obstacles that get in the way—they might be better able to guide and prepare students in a 
manner leading to improved performance. 

A separate route of investigation has focused on the relation between pretest scores and 
measures of physics learning rather than mere performance on grades or final exams. These 
studies typically assessed students’ physics knowledge both before and at the end of instruction 
to arrive at some measure of what the students had learned in the process.31,32 This approach lies 
outside of our current focus and we won’t address it further in this paper. However, several of 
these studies have special relevance to our work and require discussion. A key role was played 
by Coletta and Phillips and their collaborators who, in a series of papers beginning in 2005, 
reported that students’ pretest scores on the Lawson Test of Scientific Reasoning (LTSR) had a 
significant correlation with their physics learning gains.33,34,35,36 (The LTSR was developed by 
A.E. Lawson in 1978; we will discuss it further in Section II below.37) Dubson and Pollock 
reported confirmation of these findings in 2006 and added an important one of their own, that is: 
pretest scores on the LTSR also had a strong correlation with students’ final course grades in an 
introductory mechanics course.38 In a follow-up published in 2008, Pollock reported the same 
LTSR-grade correlation but this time for the second semester of the introductory course that 
focused on electricity and magnetism.39 We have incorporated the raw data acquired by Dubson 
and Pollock into our study and so include both of their courses in our own data sample and 
analysis. 

It would require many pages and take us too far afield to discuss in any detail the results of 
the dozens of other investigations alluded to above. We can succinctly summarize the findings of 
those which are most directly relevant to the present study by saying that nearly all of them 
found positive and generally significant correlation between students’ physics course grades and 
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scores on pre-instruction tests of mathematics skill, reasoning ability, and physics concept 
knowledge. The magnitude of the correlation coefficients varied widely, generally in the range 
0.20-0.50, depending on course, instructor, institution, and many other variables; few consistent 
patterns were observed. In almost no cases were concrete predictions of actual course grades 
examined except in the context of goodness-of-fit measures applied to a statistical model or 
correlation coefficients associated with specific grades. An exception is the work of Halloun and 
Hestenes (Ref. 14). These authors devised a predictive model that incorporated scores on both 
math skills and physics concept knowledge pretests and used it to predict students’ final letter 
grades. They reported that about 40% of the students fell into a “low competence” category 
based on their scores on the predictive model, and about 95% of students in this category 
received course grades of C or less. 

The problem with using letter grades as an analytical criterion is that methods of assigning 
such grades vary very widely among institutions, instructors, and courses. A more generalized 
criterion is to examine particular segments of the student population and compare their course 
outcomes with those of other segments of the same population. It is natural to focus on the 
students at greatest potential risk—that is, those who rank in the lower part of the class—and the 
most revealing comparison would be with those ranked toward the top of the class. This “bottom 
vs. top” comparison is most likely to reveal any existing patterns between pre-instruction 
measures and final course outcomes. The existence and scale of differences in the course 
outcomes might then provide some guidance as to the severity of the problem and the desirability 
of acting on the pre-instruction measures. One might, for example, divide the class into a top, 
middle, and bottom third, or—for a more dramatic comparison—into quartiles, comparing top 
and bottom quartile. That latter choice was made in a recent research study by Salehi et al. (Ref. 
21) and we have adopted that same approach here. (It is worth noting that bottom-to-top 
comparisons may reveal clear patterns even when a linear correlation analysis yields null or 
ambiguous results, as we discuss in more detail in Section III.) 

Salehi et al. developed predictive models that incorporated pre-instruction scores on math 
skills and physics concept tests, determining measures of correlation (adjusted R-squared or 
R2adj) between predicted and actual grades on final exams in an introductory mechanics course. 
They created a mathematical model by making certain assumptions about the nature of the data 
and then calculated that the values of R-squared that they had found implied that bottom-quartile 
scorers on the predictive model were four times more likely to obtain bottom-quartile grades than 
peers who scored in the top quartile on the predictive model.  

The investigation we report here constitutes, in part, a test of Salehi et al.’s prediction. We 
examined scores obtained on three pre-instruction diagnostic tests by students enrolled in 
introductory physics courses; the three tests assessed reasoning ability, mechanics concept 
knowledge, and skills in pre-college mathematics. We focused solely on those students whose 
scores placed them in either the top quartile (ranking in the top 25% of their class) or bottom 
quartile (bottom 25% of their class) on the various pretest measures. We then determined 
empirically the probability that students in each of these two groups received a final course grade 
that ranked them either in the top quartile (top-25% grade) or bottom quartile (bottom 25%) of 
their class. Finally, we compared the high- and low-grade probabilities of the two pretest scorer 
groups (top and bottom quartile) to each other. We found dramatic differences in those 
probabilities that implied that high scorers on the pretests were much more likely to get high 
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grades, and much less likely to get low grades, than low scorers—by factors of two to six. This 
appears to be the first concrete report of such grade comparisons since the 1985 work of Halloun 
and Hestenes, and is in broad agreement with the predictions made by Salehi et al. We describe 
the details of the investigation below and in the final section discuss the instructional 
implications of the findings by Salehi et al. in light of our own empirical observations. 
 

II. SAMPLE AND METHOD 

A. Sample 

Our population sample consisted of 31 distinct classes taught by eight different instructors at 
four universities; over 2000 total students were enrolled in these courses. The earliest course for 
which we have data took place in 2005; the most recent in 2024. All courses were part of the 
standard introductory university physics sequence, including both algebra- and calculus-based 
courses and both the first and second semester of the standard sequence. Nearly all of the courses 
incorporated research-based, active-learning techniques to a significant degree; however, each of 
the instructors had their own very distinctive approaches to implementing these methods.40 The 
universities included Arizona State University, both the Polytechnic (ASU-P) and Tempe (ASU-
T) campuses, Loyola Marymount University (LMU), the University of Colorado at Boulder  
(CU), and the University of West Florida (UWF). (See Table 1.) With the cooperation of the 
course instructors, we obtained detailed grade and pretest-score data, including the exact number 
of final grade points (not just letter grades) obtained by each student. The student sample for 
each class was restricted to those students for whom both final grade points and pretest scores 
were available, and we focused our investigation on students whose final grade points ranked in 
either the top or bottom quartile of their class.  

Course codes 
Alg-1: Algebra-based course, first semester 
Alg-2: Algebra-based course, second semester 
Calc-1: Calculus-based course, first semester 
Calc-2: Calculus-based course, second semester 
Institution codes 
ASU-P: Arizona State University, Polytechnic campus 

ASU-T: Arizona State University, Tempe campus 

LMU: Loyola Marymount University 

UWF: University of West Florida 

CU: University of Colorado, Boulder 
Pretest codes 
Math: Mathematics Diagnostic Test (administered online in all cases) 
Lawson: Lawson Test of Scientific Reasoning (administered online at 

ASU-P and in Alg-1 2005 CU, on paper in Calc-2 2007 CU and at 
LMU) 

FCI: Force Concept Inventory (administered online at UWF and on 
paper at ASU-P, LMU, and CU) 

Table I. Course, institution, and diagnostic pretest abbreviations used in this paper. 
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B. Diagnostic measures 

We used three multiple-choice diagnostic pretests: (1) the Force Concept Inventory (FCI), a 
30-item test of mechanics conceptual knowledge; (2) the Lawson Test of Scientific Reasoning 
(LTSR, hereafter referred to as “Lawson”), a 24-item diagnostic that includes questions on 
correlational, proportional, probabilistic, and control-of-variables reasoning; (3) a 16-item 
mathematics diagnostic test (“Math”) that includes questions on trigonometry, algebra, graphing, 
and geometry; all questions on the Math test were at the pre-college level and calculators were 
allowed. Students were either required to take the pretests or offered small amounts of 
participation points if they took them voluntarily. Both the Lawson and FCI tests are available to 
instructors at PhysPort.org;41 the Math test is provided in the Supplementary material. 

The mathematics test that we employ is new and was developed through our separate 
investigation into mathematical difficulties encountered by introductory physics students. 
Available online and including only 16 multiple-choice items, most of which allow rapid 
responses, it is easy to administer and requires little of students’ time (typically 15-20 minutes), 
giving it advantages over instruments used in previous studies. During our development of this 
test, we compared results with those obtained from the in-class paper version that we had 
administered to thousands of students in the same classes at the same institution. We found that 
scores on nearly all items were very nearly the same between the two versions, but only if we 
excluded scores on online tests submitted less than five minutes after the students had started. 
Although we have not made the same kind of comparison between the online and paper versions 
of the Lawson test, we considered it prudent to apply the same constraint to those tests as well. 
Thus, our samples do not include Math or (for the most part) Lawson scores for tests that were 
submitted online after less than five minutes from the time the students began their work. (We 
lacked the timing data for the Lawson test administered at CU to implement the restriction in that 
case.) 

C. Determination of top- and bottom-quartile groups 

1. Grades 
We define Q as 25% of the students. If the number of students was not divisible by 4, then Q 

is not an integer. In that case, the quartile cutoffs were adjusted to include the smaller (integer) 
number of students. For example, in a class of 42 students, Q = 10.5, so the upper quartile 
included students 1-10 and the lower quartile included students 33-42. Since we had exact grade 
points (to three or more significant figures) for each student, there was never any ambiguity of 
precisely where to set the high- and low-grade cutoffs. 

2. Pretest scores 
The determination of top- and bottom-quartile groups among the pretest scorers was 

complicated by the fact the multiple students in most samples shared the same scores on the 
pretests. This was inevitable, given the integer scoring with maximum scores of 16, 24, and 30 
for the Math, Lawson, and FCI tests respectively. Thus the procedure we adopted to define the 
top-quartile scorers was first to specify groups as follows: (1) Define Q as 25% of the number of 
students in the full sample; (2) Define a first group that includes all students whose scores put 
them definitely in the top quartile, and use F ≤ Q to represent the number of such students; (3) in 
cases where F<Q, define a second group as those students whose pretest scores were one point 
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lower than the lowest of those in the first group, and define S as the number of students in this 
second group; (4) define f =(Q−F)/S. This fraction F will be used in the calculations in Section D 
below.  

D. Determination of grade probabilities and odds ratios 

When determining the percentage of top-quartile test scorers who earn top-quartile grades, the 
second group of students is weighted by the fraction f.  If T students out of F earn grades in the 
top quartile, while t students out of S earn grades in the top quartile, then we use T + ft as the 
total number of students from the top quartile of pretest scores whose grades were also in the top 
quartile. As an example, let’s again assume that there are 42 students in the full sample so that Q 
= 10.5. Suppose now that the top eight scorers on the Math pretest have scores of 14 or higher, 
while five students obtained a score of 13. Then we have Q = 10.5, F = 8, S = 5, and f = 
(10.5−8)/5 = 0.5. Now suppose that four (out of eight) students in the first group obtained top-
quartile grades (T=4) while two (out of five) students in the second group did so (t=2). Then we 
would say that the number of top-quartile grades obtained by students with top-quartile Math 
scores is equal to T+ft = 4+(0.5)(2)=5. The probability P of obtaining a top-quartile grade is then 
given by P=(T+ft)/Q = (4+1)/10.5=48% in this example. (A figure that illustrates this example is 
provided in the Supplementary Material.) This procedure, although somewhat complicated, 
allows for consistent and objective determination of top- and bottom-quartile groups for both 
grades and pretest scores.  

We followed an analogous procedure to determine the probability of bottom-quartile grades 
from the top-quartile scorers, as well as those of top- and bottom-quartile grades from the 
bottom-quartile scorers. Next, we determined the probability ratios (the “odds ratios”) as the 
ratios of these probabilities. For example, in Table II, the “High grade odds ratio” is given by 
[(probability of a top-quartile Lawson scorer obtaining a top-quartile grade) ÷ (probability of a 
bottom-quartile Lawson scorer obtaining a top-quartile grade)]. In 25% of all cases examined, 
the odds ratio was undefined because the probability in the denominator of the ratio was 0%.  

The average values on the last lines of the tables are unweighted averages of the probabilities 
of the individual classes contained in each pretest sample, and the average odds ratio is calculate 
from the ratio of these average probabilities. It is not the average of the odds ratios of the 
individual courses (many of which are undefined). 

The unweighted average is the appropriate one to use in this case because the individual unit 
of study is the class, not the individual student. That is, we examine each class to determine the 
grade odds ratios for that class and we fully characterize the class by those ratios. The questions 
at issue, then, are (1) what is the magnitude of that ratio for a “typical” class, and (2) to what 
degree are those ratios are consistent across different classes of different size taught by different 
instructors at different institutions? We do not want to allow the size of the class to interfere with 
our assessment of the variance of the odds ratios across classes. For example, using a weighted 
average for a sample that includes a single class of N=469 when most classes have N in the 30-50 
range would vastly overrate the significance of the odds ratio of that one large class. 

E. Combined sample 

Most of the samples are small (N < 50) and in most cases there are differences in instructor or 
class time and class size such that forming a combined sample (to increase sample size) is 
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methodologically highly questionable. However, there are three classes that were given at the 
same time of day at the same institution by the same instructor three years in a row, and that had 
roughly equal numbers of students enrolled. Thus we created a new sample by combining Alg-2 
ASU-P 2022 with Alg-2 ASU-P 2023 and Alg-2 ASU-P 2024 to form the combined sample “Alg-
2 ASU-P 2022-23-24.” However, due to inevitable differences in population makeup and grading 
between the three courses, we did not simply merge the raw grade and pretest scores. Instead, we 
determined the percentile rank within their own class of each student on each of the measures 
(that is, grade points, Math score, and Lawson score) and merged those percentile values to form 
the combined sample. (We note that we also carried out a separate calculation using z-scores 
instead of percentile scores; it yielded similar results, and we do not consider it any further in this 
report.) 

F. Samples with multiple pretests 

For classes in which two or more pretests were administered, we carried out a number of 
calculations, discussed below, in which we attempted to determine the relative degree of 
association of the different pretest scores with grade points. For all these calculations, the sample 
tested included only those students who had scores on both (or all three) of the pretests, as well 
as final course grades. 

 

III. RESULTS 

A. Grade probabilities 

We found a consistently large difference in probability of receiving high (top-quartile) course 
grades between the high and low scorers (that is, top- and bottom-quartile scorers) on all three of 
the pretests, and a similar result for low (bottom-quartile) course grades. Calculated from the 
unweighted averages shown in the tables, we find that high scorers in a class were much more 
likely (by a factor of 4–6) to receive high grades, and much less likely (by a factor of 0.2–0.3) to 
receive low grades, than were low scorers in that class. This general pattern held for 113 out of 
116 comparisons (97%) and for all four universities, although the quantitative range was large. In 
Tables II and III, we show the detailed results corresponding to the Lawson pretest; similar tables 
in the Appendix show the results for the Math and FCI pretests. 

(We note that there is no apparent pattern to the three outliers among the 116 comparisons, as 
they were from three different instructors, all of whom had non-outlier values from the same or 
other pretests included in their sample.) 
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Course Campus N 
Top-

quartile 
Lawson 

Bottom-
quartile 
Lawson 

High-
grade 

odds ratio 

Alg-1 2021a ASU-P 37 49% 11% 4.3 

Alg-1 2021b ASU-P 36 41% 11% 3.7 

Alg-1 2022a ASU-P 41 49% 10% 5.0 

Alg-1 2022b ASU-P 53 58% 10% 5.8 

Alg-1 2023a ASU-P 36 39% 33% 1.2 

Alg-1 2023b ASU-P 43 55% 10% 5.5 

Alg-2 2022 ASU-P 66 52% 4% 11.9 

Alg-2 2023 ASU-P 76 51% 16% 3.2 

Alg-2 2024 ASU-P 90 41% 5% 8.0 

Alg-1 2005 CU 469 45% 8% 5.5 

Calc-2 2007 CU 276 57% 8% 6.9 

Alg-1 2007 LMU  24 50% 0% [undefined] 

Alg-1 2009 LMU 51 34% 11% 3.2 

Alg-1 2011 LMU 57 53% 18% 2.9 

Alg-1 2012 LMU 44 64% 6% 10.5 

Alg-1 2013 LMU 30 53% 12% 4.6 

Alg-1 2014 LMU 33 61% 0% [undefined] 

Alg-1 2015 LMU 24 63% 0% [undefined] 

Alg-1 2016 LMU 35 41% 0% [undefined] 

Alg-1 2018 LMU 47 54% 9% 6.3 

Alg-1 2021 LMU 27 44% 0% [undefined] 

AVERAGE  

(unweighted) 
  [1595] 50% 9% 5.8 

Table II. High-grade probability vs. Lawson pretest score. The columns show the percentages of students with 
top-quartile scores (“Top-quartile Lawson”) and bottom-quartile scores (“Bottom-quartile Lawson”) on the 
Lawson pretest who received top-quartile grades in their class. The High-grade odds ratio is found by dividing 
the value of the grade percentage of the top-quartile group by that of the bottom-quartile group. The bottom 
row shows total N [in brackets] and unweighted averages of the top- and bottom-quartile columns, while the 
ratio of those two averages is shown in the Odds Ratio column. (Course and campus code in Table 1.) 
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Course Campus N 
Top-
quartile 
Lawson 

Bottom-
quartile 
Lawson  

Low-
grade 
odds ratio  

Alg-1 2021a ASU-P 37 6% 44% 7.2 

Alg-1 2021b ASU-P 36 11% 47% 4.2 

Alg-1 2022a ASU-P 41 15% 28% 1.9 

Alg-1 2022b ASU-P 53 15% 45% 3.0 

Alg-1 2023a ASU-P 36 14% 36% 2.6 

Alg-1 2023b ASU-P 43 8% 50% 6.7 

Alg-2 2022 ASU-P 66 12% 25% 2.1 

Alg-2 2023 ASU-P 76 11% 28% 2.7 

Alg-2 2024 ASU-P 90 10% 36% 3.6 

Alg-1 2005 CU 469 10% 42% 4.4 

Calc-2 2007 CU 276 12% 44% 3.8 

Alg-1 2007 LMU  24 0% 58% [undefined] 

Alg-1 2009 LMU 51 5% 48% 10.4 

Alg-1 2011 LMU 57 15% 46% 3.0 

Alg-1 2012 LMU 44 9% 27% 3.0 

Alg-1 2013 LMU 30 27% 12% 0.4 

Alg-1 2014 LMU 33 0% 68% [undefined] 

Alg-1 2015 LMU 24 0% 75% [undefined] 

Alg-1 2016 LMU 35 11% 46% 4.0 

Alg-1 2018 LMU 47 16% 42% 2.7 

Alg-1 2021 LMU 27 0% 89% [undefined] 

AVERAGE  

(unweighted) 
  [1595] 10% 45% 4.5 

Table II. Low-grade probability vs. Lawson pretest score. The columns show the percentages of students with 
top-quartile scores (“Top-quartile Lawson”) and bottom-quartile scores (“Bottom-quartile Lawson”) on the 
Lawson pretest who received bottom-quartile grades in their class. The Low-grade odds ratio is found by 
dividing the value of the grade percentage of the bottom-quartile group by that of the top-quartile group. The 
bottom row shows total N [in brackets] and unweighted averages of the top- and bottom-quartile columns, while 
the ratio of those two averages (bottom divided by top) is shown in the Odds Ratio column. (Course and campus 
code in Table 1.) An outlier case (that does not follow the general pattern) is shown in bold red italics. 
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 Another way to view the results is to compare students in specific pretest groups to a student 
selected at random. If selected at random, 25% of the students in a class would be expected to 
receive a course grade falling within any specified quartile.  In contrast, we see that the actual 
proportions of the top- and bottom-quartile scorers receiving too- and bottom-quartile grades 
deviate from 25% by a wide margin in each case; see Table IV. 

 

Table IV. Proportion of students receiving top- and bottom-quartile grades for a random group of students, 
for bottom-quartile scorers on each of the three diagnostic tests, and for top-quartile scorers on each of 
those tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When comparing top- and bottom-quartile scorers to each other, rather than to a random 
student, we find that top-quartile scorers on the pretests are four to six times as likely to receive 
high grades, and one-third to one-fifth as likely to receive low grades, compared to bottom-
quartile scorers on the same pretests. The average probability ratio (high-scorer probability vs. 
low-scorer probability) for receiving a top-quartile grade was 5.8, 3.8, and 5.8 for the Lawson, 
Math, and FCI pretests, respectively. The average probability ratio (low-scorer probability vs. 
high-scorer probability) for receiving a bottom-quartile grade was 4.5, 3.1, and 3.7 for the 
Lawson, Math, and FCI pretests, respectively.  

[Note that these figures are drawn from the unweighted averages shown in the tables. Had we 
instead weighted the averages according to class enrollment, some of the numbers would have 
been different.] 

It is important to emphasize that these consistent quartile comparisons held even though the 
linear correlation coefficients between grades and pretest scores were not particularly high (most 
fell in the +0.3-0.6 range) and most scatterplots did not immediately reveal the underlying 
pattern. However, with closer examination, this pattern becomes evident in nearly all of the 
samples. As an illustration, we use the large, combined sample Alg-2 ASU-P 2022-23-24 and 
first show in Fig. 1 the grade odds ratios for this sample. 

 

 Top-quartile 
grade proportion 

Bottom-quartile 
grade proportion 

   

Random students 0.25 0.25 

Bottom-quartile scorers on Lawson 0.09 0.45 

Bottom-quartile scorers on Math 0.12 0.36 

Bottom-quartile scorers on FCI 0.08 0.40 

   

Top-quartile scorers on Lawson 0.50 0.10 

Top-quartile scorers on Math 0.44 0.12 

Top-quartile scorers on FCI 0.47 0.11 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

1
1
9
/5

.0
2
5
5
7
6
8



12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Grade odds ratios (high grade = top-quartile grade; low grade = bottom-quartile grade) for 
Math and Lawson pretests in the Alg-2 ASU-P 2022-23-24 sample. The high-grade odds ratio (top row) is 
the ratio of the proportion of high (top-quartile) scorers on the specified pretest (Math, left column; 
Lawson, right column) who had top-quartile course grades to the proportion of low (bottom-quartile) 
pretest scorers who also had top-quartile grades.  For the Math pretest it was (40.7%/14.8%)=2.8, while 
for the Lawson pretest that ratio was (43.1%/10.5%) = 4.1. The low-grade odds ratio is the ratio of the 
proportion of low (bottom-quartile) pretest scorers who had bottom-quartile grades to the proportion of 
high (top-quartile) pretest scorers who had bottom-quartile grades.  For the Math pretest it was 
(41.1%/8.6%)=4.8, while for the Lawson pretest, that ratio was (30.9%/13.0%) = 2.4.  

 

 

In Fig. 2(a), the scatter plot of all grades and Math pretest scores (r = +0.35) in this sample is 
shown; no pattern is readily discernable. However, in part (b) of that figure, only the points 
corresponding to top- and bottom-quartile grades are shown; here, a pattern is obvious: those 
with higher pretest scores had more top-quartile grades and fewer bottom-quartile grades than 
low scorers. Note that all Math scores of the top-and bottom grade quartiles are shown in this 
figure; the ovals are drawn to enclose roughly the top and bottom 50% of Math scores, 
respectively. The points in the top and bottom Math quartiles may be estimated by eye and seen 
to correspond approximately to the exact numbers in Fig. 1 which were calculated as described 
in II.D. (The varying separations between Math scores are artifacts introduced by the conversion 
to within-class percentiles and the differing numbers of students in each of the three courses 
combined in this sample.) 
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Fig. 2. (a) Scatterplot of grade percentile vs. Math pretest percentile for the combined sample ASU-P Alg-
2 (2022, 2023, 2024). (b) Same data as (a) except only top and bottom grade quartiles are included. Top-
half scorers on the Math pretest had more high grades and fewer low grades than low-half scorers on that 
test. Ovals are drawn to enclose roughly the top and bottom 50% of Math scores, respectively. (The 
varying separations between Math scores are artifacts introduced by the conversion to within-class 
percentiles and the differing numbers of students in each of the three courses combined in this sample.) 
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B. Association between pretest scores and course grades: An illustration 

As an illustration of the impact of the strong association between diagnostic pretest scores and 
course grades, a scatterplot of Lawson pretest scores and course grades for our largest sample 
(Alg-1 2005 CU, N = 469) is shown in Fig. 3. This figure is similar to Fig. 2 except that it uses 
Lawson scores instead of Math scores, and it uses actual grade points received on a 0-100% scale 
rather than class percentiles; this accounts for the more compact appearance of the grade 
distribution. The adjusted R-squared at only +0.156 is not particularly large and implies that 
most of the variance in the grades is due to other factors. Nonetheless, the median grade for those 
students who scored 63% on the Lawson test (15 out of 24 correct; N = 43) was only C (72.3 
grade points), while that for students who scored 88% (21 out of 24; N = 59) was B (81.6 grade 
points), a full letter grade higher. This high degree of association between grades and pretest 
scores, though illustrated with particular clarity in this large sample, was quite typical of the 
great majority of the 116 cases examined. (We note that some results for this class have already 
been presented by Dubson and Pollock; see ref. 38.) 

 

 

Fig. 3. Final course grade points (0-100% scale) for students in the Alg-1 2005 CU sample as a function 
of their score on the Lawson pretest (0-100% scale); each dot represents one student. The equation for the 
linear fit line is shown, as are the median letter grades for students scoring either 15 (63%) or 21 (88%) 
(out of 24) on the Lawson pretest. (Grade point cutoffs were 70% for a C and 80% for a B.) 

Although it would be useful to assess the implications for students who score in the bottom 
quartile on two or more of the diagnostic tests (“bottom-bottom”), the small sample sizes make 
this impractical in most cases since relatively few students fit into this category. One exception is 
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the Alg-1 2005 CU sample, in which 30 students (out of 469 total) scored in the bottom quartile 
on both the FCI and the Lawson test. Of these 30 students, not a single one had a final course 
grade within the top quartile of the class. (For a random selection of 30 students, 7 or 8 would 
have been expected to score in the top quartile.) At the same time, their proportion of bottom-
quartile grades was not exceptionally high. In the Alg-2 AAA sample that combined three 
separate courses (2022, 2023, and 2024), only two of the 23 students (9%) who scored in the 
bottom quartile on both the Math diagnostic and the Lawson test had final grades in the top 
quartile, compared to approximately six expected by random selection. Moreover, 10 (43%) of 
the students in this group had bottom-quartile final grades. For this sample, the proportions of 
both top- and bottom-quartile grades for the “bottom-bottom” group were thus somewhat worse 
than either the bottom-quartile Math or bottom-quartile Lawson groups on their own, although 
not dramatically so (see Fig. 1, caption). 

C. Relative predictive power of the three pretests 
It is clearly of interest to determine which of the pretests, if any, might offer the greatest 

power in predicting grade probabilities. However, the very great differences between the nature 
and topics of the different courses and between the methods and procedures of different 
instructors, the varying grading philosophies, and differences among student populations at 
different institutions all contribute to making this type of comparison difficult indeed. Moreover, 
the generally small sample sizes exacerbate the problem. For the bulk of our samples, these 
challenges proved unresolvable. More detailed discussion can be found in the Supplementary 
Material, along with a table of all regression coefficients and associated p-values for multiple 
linear regression fits for all samples in which more than one pretest was administered. 

  
D. Correlations among the pretest scores 

Certainly there are, as one might expect, significant positive correlations between scores on 
any one of the pretests and scores on the other(s) in classes in which two or more pretests were 
administered. For example, the average correlation coefficients between FCI and Lawson pretest 
scores were in the range 0.40-0.45 and between FCI and Math they were 0.30-0.35, while those 
between Math and Lawson were 0.30 and 0.45 in Alg-1 and Alg-2 respectively. Further 
discussion of the implications of these correlations can be found in the Supplementary Material.  

 

E. Analysis of largest samples: which pretest is most closely associated with final grade? 

In order to explore in greater depth the relative degree of association with course grades of the 
various pretests, we carried out a very detailed analysis of our largest samples. For Alg-1 2005 
CU, it seemed clear that Lawson pretests scores were more closely associated with grades than 
were FCI pretest scores. For example, a multiple regression calculation in this case yielded the 
equation G = 54.611 + 0.264L + 0.081F where G, L, and F are the percentile scores for final 
course grade, Lawson pretest score, and FCI pretest score, respectively. Both L and F were 
statistically significant predictors in this model; however, the much larger weight of the L 
coefficient as well as other comparison criteria seemed to favor in more unambiguous fashion the 
Lawson pretest scores over FCI scores as the more influential of the two variables in this sample. 
Further details are provided in the Supplemental Material.  
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It may seem plausible that Lawson (reasoning) pretest scores would be a more influential 
factor in predicting final grades than FCI pretest scores. However, since we have only a single 
sample large enough to carry out this comparison, we hesitate to draw any broader conclusions 
from this finding. Depending on the previous level of physics preparation of a particular class, 
the relative weight of Lawson and FCI pretest scores could conceivably vary substantially. 

For the combined sample Alg-2 ASU-P 2022-23-24, there was no clear-cut resolution in favor 
of either Math or Lawson scores. A multiple regression calculation in this case yielded the 
equation G = 26.363 + 0.185L + 0.295M, where G, L, and M are the percentile scores for final 
course grade, Lawson pretest score, and Math pretest score, respectively; both L and M were 
statistically significant predictors in this model. Since the coefficient of M is substantially larger 
than that of L, the implication might be that the Math pretest score was the more “influential” of 
the two pretests in this case. However, some of the other comparison criteria contradicted this 
conclusion. The details of these calculations may be found in the Supplementary Material.  

 

F. Interaction effects 
A so-called “interaction” effect in the present context might imply, for example, that grades 

are more strongly dependent on (e.g., have higher correlation with) Math pretest scores for 
students having high Lawson scores than they are for students with low Lawson scores. (The 
opposite pattern in which Lawson scores and Math scores exchange places would also be an 
interaction effect.) Although standard multiple regression techniques did not show any 
significant interaction effects, a closer analysis of our data suggested the possibility of an effect 
in which the magnitude of the correlation between grades and scores on one of the pretests is 
larger for students who score higher on the other pretest. One might characterize this relationship 
by saying that if a student scores low on one of the pretests, their score on the other pretest is less 
predictive of their grade than it might be if they had scored high on that pretest. However, this 
does not imply that high pretest scores on both or all pretests are necessary for success in the 
course. Rather, it suggests that for students who score high on one of the pretests, a high score on 
the other pretest is more likely to be accompanied by a high grade than would be the case if the 
score on the first pretest had been low. (Certainly, “high-high” scores are more likely to be 
associated with high grades than are “low-low” scores but scoring high on one pretest and just 
average on another is also associated with a high grade.) Further details are in the Supplementary 
Material. 

 

G. Comment on differences among the samples 
The sample includes classes from three state universities (two large, one medium) and a 

medium-size private research institution; some differences among the student populations would 
be expected. The only objective measures we have at hand to compare them are the pretest 
scores, but it would not make sense to compare, for example, pretest scores in an algebra-based 
course at one institution to those in a calculus-based course at another. Arguably the only course 
for which we have adequate numbers to compare is the first-semester algebra-based course, and 
so we note that in this course the average top-quartile cut-offs for Lawson score (maximum = 24) 
were approximately 21, 20, and 17 for courses at CU (N = 1), LMU (N = 10), and ASU-P (N = 
6), respectively. The bottom-quartile cutoffs for the same test in the same sequence were 15, 14, 
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and 10. For the FCI (maximum score = 30), top-quartile cutoffs were 13, 12, and 11, while 
bottom-quartile cutoffs were 7, 5, and 5. (For LMU, N = 9 for FCI.) These figures indicate a 
significant difference between ASU-P and the other two universities, at least regarding Lawson 
test scores. We did not attempt to investigate any implications of these differences, but it is 
notable that the pattern of grade probabilities and odds ratios was quite consistent among the 
three institutions. 

Other factors that could conceivably have resulted in differences among the samples would be 
whether they were algebra-based or calculus-based classes, whether they were first-semester 
(mechanics) or second-semester (E&M) classes, or whether they might have been affected by the 
Covid era in varying ways, including the dates of the courses. We did not observe any clear-cut 
signals of effects due to any of these other factors, since the variation in odds ratios was so much 
greater than any that might have been due to these factors. Of course, in the future, with a larger 
sample including larger classes, such differences might become apparent.  

 

IV. IMPLICATIONS AND CONCLUSIONS 

Our findings that high scores on mathematics, reasoning, and physics concept pretests are all 
associated with higher course grades in introductory physics are not themselves new; rather, they 
are consistent with findings of many other investigations over the years. However, we offer a 
novel approach to analyzing this association by comparing explicitly the probabilities of 
obtaining high and low course grades by the high and low scorers on the pretests. We have 
pointed out that although linear correlation coefficients between grades and pretest scores are 
generally fairly low, the relative probabilities of obtaining high and low course grades by high 
and low pretest scorers are very different, generally differing by factors between 2–6. Apart from 
a 40-year-old report that addressed similar themes, it seems that only recently has the possibility 
of such a large difference again been pointed out, and that only based on model calculations by 
Salehi et al.; our investigation offers strong support for that model prediction. It is worth 
elaborating on this point in more detail. 

Salehi et al. developed a number of predictive models for final exam performance in the 
introductory calculus-based mechanics course (“physics 1”); their models incorporated scores on 
pre-instruction tests of both math skills (in the form of the SAT or ACT) and physics concept 
knowledge (in the form of the FCI or the Force and Motion Conceptual Evaluation, another 
mechanics diagnostic test42). They found that typical values of adjusted R-squared for their 
model fits were in the range 0.20-0.30, roughly in agreement with our own findings, and they 
made the following crucial observation based on a model calculation that assumed normally 
distributed measures of incoming preparation: 

These R-squared values may seem modest to some, but they have career-altering 
implications for students who are poorly prepared….for an R-squared of 0.34…a 
student who comes in with preparation in the bottom quartile has about a factor of 4 
higher probability of being in the bottom quartile of the grade distribution than a 
student who starts the course in the upper quartile of preparation. If one considers 
bottom quartile exam scores as failing, this means that poorly prepared students are 4 
times more likely to fail their physics 1 final exams than peers with good incoming 
preparation. [Salehi et al. (2019), p. 020114-6] 
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Although one might argue that merely obtaining a bottom-quartile grade is not in itself 
necessarily associated with “failing,” their quantitative prediction is in perfect agreement with 
our empirical finding that bottom-quartile scorers on pretests are 3-5 times more likely to obtain 
bottom-quartile grades than peers who scored in the top quartile on the pretests. Moreover, their 
point regarding the potential career-altering implications for poorly prepared students enrolled in 
this crucial “gateway” course is well-taken and one with which we fully concur. 

It is essential to underline that none of these studies, including our own, have empirically 
tested whether there is a causal relationship between physics grades and the skills measured by 
the various pretests. (Such a test is distinct from the creation of so-called statistical “causal 
models.”) We would argue that there is no firm basis for asserting, for example, that efforts to 
improve students’ pre-instruction physics concept knowledge, or math and reasoning skills, 
would lead directly to improvements in these students’ physics course performance. However 
plausible such an expectation might be, it is nonetheless conceivable that these various pretest 
measures are merely markers associated with other aspects of students’ pre-college experiences 
that have more direct impact on their ability to succeed in college physics. That said, we would 
agree that efforts to improve students’ pre-college preparation are extremely desirable and offer 
perhaps the best prospects currently available for having significant impact on students’ 
performance in college physics courses. 

Needless to say, there are many other factors—unexplored here—that can impact a physics 
student’s course performance. Arguably one of the most important is “motivation,” the degree to 
which the student puts time, effort, and commitment into their physics study. Frequently 
mentioned by previous researchers, motivation has proven difficult to investigate systematically. 
Although we were unable to look at motivation in any systematic way in our own investigation, 
one of the instructors had many opportunities to study the students in his own classes that formed 
part of the data sample. It was remarkable how often the “outlier” cases could plausibly be 
explained by motivational factors. Students who scored very high on pretests but ended with 
very low course grades frequently missed classes, failed to turn in assignments, and/or did not 
participate in class problem-solving activities. By contrast, students who scored low on the 
pretests but achieved high course grades typically attended class consistently, participated 
actively in class activities and frequently asked questions, turned in assignments on time, and 
often sought additional aid from the instructor via e-mail, Zoom, and/or after-class review 
sessions. Additional light on the “motivation” issue might be shed by examining students’ 
performance on course exams and comparing those performances to their final course grades. 
Elements of course grades such as attendance, homework, and other assignments are often 
associated with motivational factors and can indicate levels of engagement. However, for the 
great majority of our samples, we did not collect the data that would be needed for this type of 
analysis and so it will have to remain for future investigators to examine. 

We did not track and therefore were unable to consider a number of other pre-instruction 
factors that have featured prominently in recent investigations, including among others gender, 
demographic variables, self-efficacy, high-school background, and attitudes about learning 
science. Another recent study has looked at whether the nature of the instructional methods 
impacts the apparent influence of some of the pre-instruction factors.43 As mentioned previously, 
the instruction in most of the courses in our sample incorporated a variety of research-based, 
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active-learning approaches; this did not really offer an opportunity to examine the nature of 
instruction as a possible confounding factor.  

It is, of course, of great interest and potential importance to understand why, exactly, the 
predictive power of the various pretests is so large, representing—as they do—the previous 
preparation of the students enrolled in introductory physics classes. Perhaps the most important 
point to make is one that can sometimes be overlooked by college physics instructors, that is: 
Before we meet the students in our classes, they have 16-18 years of previous experience, 
typically including 13 years or more of formal academic preparation. That experience includes 
exposure to mathematics, to at least some physics, and to many “reasoning”-related tasks. It 
would be rather strange if those many years of preparation did not have some significant impact 
on the potential success of those students in our classes, regardless of the great effort and diverse 
instructional methods we bring to bear as instructors.  

We have some additional clues. In unpublished work, we have found that class-average score 
on most individual items on the mathematics pretest is highly predictive of that class’s average 
score on the full 16-item test, even though many different topics are included on the test. (The 
class-average item score is simply the proportion of all students in a class who got that item 
correct.) There is a very wide spread in class preparation, as indicated by class-average scores on 
the full diagnostic ranging from 62% to 92% for 27 different classes at multiple institutions. 
However, merely knowing the class-average score on any one of about half of the individual test 
items allows a prediction of the class-average score on the full diagnostic to ±5% with roughly 
90% confidence. This suggests that difficulties with math skills are not centered on one or 
another such skill but instead tend to cluster together. This indicates that Math pretest scores 
represent a broad category of pre-college preparation that is reflected in a multitude of individual 
skills, not easily addressed by one or two college math courses. Similarly, whatever student 
abilities are measured by the Lawson reasoning test, they have been under development for well 
over a decade and are not likely to change significantly during a single four-month semester. The 
dynamics of how these reasoning skills may interact with physics instruction were subjects of 
investigation during the 1970s by Karplus, Arons, and others; these authors emphasized that an 
ability—and inclination—to search for relationships and patterns was central to success in 
physics.44  

In spite of the many factors that influence students’ physics course performance, our 
investigation has one clear and consistent outcome that bears repeating, that is: the high- and 
low-grade probabilities of high-scorers on a single pre-instruction diagnostic test typically differ 
by a factor of three to six from the corresponding grade probabilities of low scorers on that 
pretest. Since we are referring here only to probabilities, the course performance outcome for any 
individual student, regardless of their pretest scores, remains highly uncertain. However, it is 
reasonable to acknowledge that the course performance expected for the broad group of low-
scorers on these pretests must be very different from that expected for the group of high-scorers. 

 A natural follow-up question is whether this finding might be used in some way to offer 
modified or supplemental instruction for the more “at-risk” group that could perhaps improve 
their course outcomes. We should emphasize that most of the instructors of the courses in our 
samples were already both highly motivated and very experienced in providing activity-based 
instruction that engages students much more intensively than traditional “lecture only” formats. 
They used methods and materials that were based on or informed by physics education research, 
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and which have proven track records of improving student outcomes. Among the explicit goals 
and demonstrated outcomes of these methods is to enhance the learning of students who have 
substandard preparation (see Ref. 40 and references therein). This suggests that improving the 
situation in ways that might, for example, reduce the outcome gap between high- and low-pretest 
scorers will not be easy. In principle, instruction that is modified and more precisely targeted at 
the most at-risk students might show improved effectiveness, but implementation of such 
measures is associated with a host of practical and logistical challenges. 

Previous investigators have raised similar questions and offered suggestions such as math 
skills enrichment, practice on reasoning skills, and modifications of the instructional methods. 
Some reports have suggested promising results when implementing these measures (most 
recently Ref. 43); however, none appear to have attempted to assess the effectiveness of such 
measures by explicitly examining changes in high- and low-grade probabilities. There is no 
question that an investigation of this type would be fraught with methodological challenges. 
Nonetheless, there are potential advantages to using a relatively straightforward high/low grade 
comparison as an assessment measure in contrast to attempting to create and test complicated 
statistical models, as others have done. We hope that further research will shed additional light 
on methods for improving the course-performance outlook of students who enter with 
significantly weaker preparation as measured by pre-instruction diagnostic tests. 

 

SUPPLEMENTARY MATERIAL 

Detailed discussions and data analysis related to Sections III.C, D, E, and F are included in 
the Supplementary Material. A print version of the mathematics diagnostic test is also included; 
for access to the automated online version, please contact the corresponding author. 
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APPENDIX 

 

 

Course Campus   N 
Top-
quartile 
Math 

Bottom-
quartile 
Math 

High-
grade 
odds ratio  

Alg-1 2021a ASU-P 39 51% 10% 5.0 

Alg-1 2021b ASU-P 42 44% 10% 4.6 

Alg-1 2022a ASU-P 40 27% 6% 4.4 

Alg-1 2022b ASU-P 52 49% 10% 5.1 

Alg-1 2023a ASU-P 42 39% 10% 4.1 

Alg-1 2023b ASU-P 46 64% 9% 7.3 

Alg-2 2022 ASU-P 75 46% 21% 2.2 

Alg-2 2023 ASU-P 92 41% 13% 3.2 

Alg-2 2024 ASU-P 99 51% 8% 6.3 

Alg-2 2021 ASU-T 129 30% 39% 0.8 

Calc-1 2021a UWF 53  38% 0% [undefined] 

Calc-1 2021b UWF 42 44% 0% [undefined] 

Calc-2 2021 UWF  58  43% 14% 3.1 

AVERAGE 
(unweighted)  809 44% 12% 3.8 

Table AI. High-grade probability vs. Math pretest score. The columns show the percentages of students with 
top-quartile scores (“Top-quartile Math”) and bottom-quartile scores (“Bottom-quartile Math”) on the 
mathematics pretest who received top-quartile grades in their class. The high-grade odds ratio is found by 
dividing the value of the grade percentage of the top-quartile group by that of the bottom-quartile group. The 
bottom row shows total N [in brackets] and unweighted averages of the top- and bottom-quartile columns, 
while the ratio of those two averages is shown in the Odds Ratio column. (Course and campus code in Table 
1.) An outlier case (that does not follow the general pattern) is shown in bold red italics. 
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Course Campus    N 
Top-
quartile 
Math 

Bottom-
quartile 
Math 

Low-
grade 
odds ratio  

Alg-1 2021a ASU-P 39 10% 41% 4.0 

Alg-1 2021b ASU-P 42 16% 48% 3.0 

Alg-1 2022a ASU-P 40 0% 42% [undefined] 

Alg-1 2022b ASU-P 52 26% 29% 1.1 

Alg-1 2023a ASU-P 42 20% 31% 1.5 

Alg-1 2023b ASU-P 46 3% 21% 7.3 

Alg-2 2022 ASU-P 75 11% 26% 2.4 

Alg-2 2023 ASU-P 92 11% 30% 2.8 

Alg-2 2024 ASU-P 99 5% 45% 8.4 

Alg-2 2021 ASU-T 129 11% 30% 2.8 

Calc-1 2021a UWF 53 0% 47% [undefined] 

Calc-1 2021b UWF 42 14% 38% 2.8 

Calc-2 2021 UWF  58 24% 44% 1.8 

AVERAGE 
(unweighted)  809 12% 36% 3.1 

Table AII. Low-grade probability vs. Math pretest score. The columns show the percentages of students with 
top-quartile scores (“Top-quartile Math”) and bottom-quartile scores (“Bottom-quartile Math”) on the 
mathematics pretest who received bottom-quartile grades in their class. The Low-grade odds ratio is found by 
dividing the value of the grade percentage of the bottom-quartile group by that of the top-quartile group. The 
bottom row shows total N [in brackets] and unweighted averages of the top- and bottom-quartile columns, 
while the ratio of those two averages (bottom divided by top) is shown in the Odds Ratio column. (Course and 
campus code in Table 1.)  
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Course Campus   N 
Top-
quartile 
FCI 

Bottom-
quartile 
FCI 

High-
grade 
odds ratio  

Alg-1 2017 ASU-P 22 55% 0% [undefined] 

Alg-1 2018 ASU-P 53 45% 8% 6.0 

Alg-1 2019 ASU-P 63 38% 13% 3.0 

Alg-1 2021a ASU-P 35 57% 0% [undefined] 

Alg-1 2021b ASU-P 37 32% 17% 1.9 

Alg-1 2022a ASU-P 41 21% 15% 1.4 

Alg-1 2022b ASU-P 52 26% 7% 3.9 

Alg-1 2023a ASU-P 40 30% 20% 1.3 

Alg-1 2023b ASU-P 47 55% 18% 3.1 

Alg-1 2005 CU 470 41% 12% 3.5 

Alg-1 2007 LMU 23 87% 0% [undefined] 

Alg-1 2009 LMU 51 63% 0% [undefined] 

Alg-1 2012 LMU 44 50% 0% [undefined] 

Alg-1 2013 LMU 30 51% 0% [undefined] 

Alg-1 2014 LMU 33 43% 12% 3.6 

Alg-1 2015 LMU 24 67% 0% [undefined] 

Alg-1 2016 LMU 34 71% 0% [undefined] 

Alg-1 2018 LMU 47 34% 14% 2.4 

Alg-1 2021 LMU 27 44% 0% [undefined] 

Calc-1 2012 ASU-P 40 43% 0% [undefined] 

Calc-1 2013a ASU-P 18 44% 0% [undefined] 

Calc-1 2013b ASU-P 48 54% 17% 3.3 

Calc-1 2021a UWF 62 29% 26% 1.1 

Calc-1 2021b UWF 53 40% 15% 2.6 

AVERAGE 
(unweighted) 

 (1394) 47% 8% 5.8 

 

 

 

Table AIII. High-grade probability vs. FCI pretest score. The columns show the percentages of students with 
top-quartile scores (“Top-quartile FCI”) and bottom-quartile scores (“Bottom-quartile FCI”) on the FCI pretest 
who received top-quartile grades in their class. The high-grade odds ratio is found by dividing the value of the 
grade percentage of the top-quartile group by that of the bottom-quartile group. The bottom row shows total N 
[in brackets] and unweighted averages of the top- and bottom-quartile columns, while the ratio of those two 
averages is shown in the Odds Ratio column. (Course and campus code in Table 1.) 
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Course Campus     N 
Top-
quartile 
FCI 

Bottom-
quartile 
FCI 

Low-grade 
odds ratio  

Alg-1 2017 ASU-P 22 18% 32% 1.8 

Alg-1 2018 ASU-P 53 19% 45% 2.4 

Alg-1 2019 ASU-P 63 6% 47% 7.4 

Alg-1 2021a ASU-P 35 0% 56% [undefined] 

Alg-1 2021b ASU-P 37 11% 43% 4.0 

Alg-1 2022a ASU-P 41 21% 39% 1.9 

Alg-1 2022b ASU-P 52 18% 33% 1.8 

Alg-1 2023a ASU-P 40 20% 37% 1.8 

Alg-1 2023b ASU-P 47 9% 43% 5.1 

Alg-1 2005 CU 470 19% 22% 1.1 

Alg-1 2007 LMU 23 0% 52% [undefined] 

Alg-1 2009 LMU 51 8% 47% 6.0 

Alg-1 2012 LMU 44 9% 50% 5.4 

Alg-1 2013 LMU 30 24% 37% 1.5 

Alg-1 2014 LMU 33 7% 32% 4.7 

Alg-1 2015 LMU 24 0% 67% [undefined] 

Alg-1 2016 LMU 34 12% 47% 4.0 

Alg-1 2018 LMU 47 15% 31% 2.2 

Alg-1 2021 LMU 27 0% 44% [undefined] 

Calc-1 2012 ASU-P 40 10% 43% 4.3 

Calc-1 2013a ASU-P 18 0% 44% [undefined] 

Calc-1 2013b ASU-P 48 17% 8% 0.5 

Calc-1 2021a UWF 62 13% 40% 3.1 

Calc-1 2021b UWF 53 8% 25% 3.3 

AVERAGE 
(unweighted) 

 

  N=1394 11% 40% 3.7 

 

  

Table AIV. Low-grade probability vs. FCI pretest score. The columns show the percentages of students with 
top-quartile scores (“Top-quartile FCI”) and bottom-quartile scores (“Bottom-quartile FCI”) on the FCI pretest 
who received bottom-quartile grades in their class. The Low-grade odds ratio is found by dividing the value of 
the grade percentage of the bottom-quartile group by that of the top-quartile group. The bottom row shows 
total N [in brackets] and unweighted averages of the top- and bottom-quartile columns, while the ratio of those 
two averages (bottom divided by top) is shown in the Odds Ratio column. (Course and campus code in Table 
1. An outlier case (that does not follow the general pattern) is shown in bold red italics.)  
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II D: Determination of grade probabilities and odds ratios 

 
This figure illustrates the example provided in Section  II D. 
 

 
 

 
 
 
 

 
 

Fig. S0. An illustration of the example provided in Section II D of the main text, 
using simulated data. Red font indicates upper-quartile grades. 
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III C: Relative predictive power of the three pretests 

It is clearly of interest to determine which of the pretests, if any, might offer the greatest 
power in predicting grade probabilities. However, the very great differences between the nature 
and topics of the different courses and between the methods and procedures of different 
instructors, the varying grading philosophies, and differences among student populations at 
different institutions all contribute to making this type of comparison difficult indeed. Moreover, 
the generally small sample sizes exacerbate the problem. One straightforward approach is simply 
to compare the odds ratios of the different pretests: does one or another of the pretests seem to 
generate a significantly larger grade probability ratio than the others? The average high-grade 
odds ratios are 5.8, 3.8, and 5.8 for Lawson, Math, and FCI pretests respectively. For the low-
grade odds ratios, the corresponding values are 4.5, 3.1, and 3.7. These values do not differ 
greatly from each other and, given the enormous range and variability of the odds ratios in the 
various courses, it would be hard to claim from this with any confidence that, for example, the 
Lawson pretest seems more predictive than the Math pretest. Indeed, even within the same 
course at the same institution over a period of several years, there is a great deal of variation in 
the odds ratios of any of the individual pretests. (Stewart et al. [Ref. 22]) emphasize that various 
types of pre-instruction preparation may—and usually do—appear to influence grades in ways 
that differ significantly among different demographic groups. Still, the variation we observed 
suggests that additional factors beyond simple demographics are also at work.) 

In those classes in which two or more of the pretests were administered, it is possible—in 
principle—to try to compare the relative predictive power of the different pretests. However, 
again, the generally small sample sizes make this extremely difficult. A straightforward approach 
is to carry out a multiple linear regression analysis for each class such that course grade is 
expressed as a function of the different pretest scores, and for which the relative magnitude and 
significance of the coefficients of the different pretests in the resulting predictor equation are 
compared. The results of such an analysis are that, in most cases, the coefficients of one or more 
of the individual pretests are found to be non-significant (p>0.05), even though the quartile odds 
ratios for these pretests are often quite large. To illustrate this observation, we can look at the 
results for Alg-1 2022b ASU-P (N = 46); the equation that is generated by a multiple linear 
regression is Grade = 70.9 + 0.130 Lawson + 0.037 Math + 0.126 FCI where Grade, Lawson, 
Math, and FCI refer to the course grade points and the pretest scores for the Lawson, Math, and 
FCI tests, all expressed on a 0-100% scale. The adjusted R2 for the overall fit is 0.12 and the p-
value is 0.04, indicating a fairly low but marginally significant correlation. (That is, the multi-
factor predictor equation yields grades that are significantly closer to the actual observed values 
than would be the case if one simply assigned the average course grade to each student in the 
class.) However, the p-values for the individual coefficients are all greater than 0.05 (p = 0.11, 
0.69, and 0.18 for Lawson, Math, and FCI respectively), none of which rises to the level of 
significance. Despite this seeming implication of low association between pretest scores and 
grades, Tables II and III and V-VIII show that high scorers on the pretests were far more likely 
(≈400-600%) to get high grades in this course and (with one exception) far less likely (≈35-55%) 
to get low grades, than low scorers in the same course. This pattern is representative of the other 
courses in the sample and is a caution that standard linear regression analysis may be highly 
misleading in similar cases. 
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More broadly, we have six samples in which all three diagnostic pretests were administered, 
all in Alg-1 at ASU-P, including 2021a,b; 2022a,b; and 2023a,b. In the multiple linear regression 
including all three pretests, the coefficients of predictor variables varied widely: 0.08-0.30 for 
Lawson; 0.10-0.37 for Math; -0.23-+0.26 for FCI. In none of the six samples did all three 
predictor variables meet the p<0.05 criterion for statistical significance. The Lawson coefficient 
met that criterion in two of the samples, as did the Math—but in only one of those samples did 
both the Lawson and Math coefficients meet the criterion. The FCI coefficient met the p<0.05 
criterion in only one of the six samples, while neither the Lawson nor the Math coefficient met 
the criterion in that sample. 

Table S0 shows all multiple correlation coefficients and their respective p-values for all 
courses in which more than one diagnostic was administered.  

 

 

III D: Correlations among the pretest scores 
Certainly there are, as one might expect, significant positive correlations between scores on 

any one of the pretests and scores on the other(s) in classes in which two or more pretests were 
administered. In principle, this could imply the possibility that only one of the measures has a 
genuine association with grades while the other measures merely appear to have such an 
association due to their strong relationship to the one dominant factor. For example, the average 
correlation coefficients between FCI and Lawson pretest scores were in the range 0.40-0.45 and 
between FCI and Math they were 0.30-0.35, while those between Math and Lawson were 0.30 

Table S0. For each course in which more than one diagnostic was administered, the adjusted R-squared of 
the multiple linear regression is shown along with its p-value. (Red font indicates p values meeting the 
p<0.05 significance criterion.) The regression coefficients of the Lawson, Math, and FCI variables are 
shown as well, along with their respective p-values. Although 17 of the 21 regressions are statistically 
significant, one or more of the predictor variable coefficients fails to meet the significance criterion in 16 of 
the 21 samples. 
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and 0.45 in Alg-1 and Alg-2 respectively. The standard way of testing whether one or more of the 
predictor variables is genuinely dominant is to carry out a multiple linear regression and see 
whether the coefficients of one or more of the predictor variables turn out to be not statistically 
significant when all of the variables are included. Indeed, as mentioned in Sec. III C, when we 
carried out such calculations one or more of the predictor variables often did turn out to be non-
significant—however, there was no consistency nor any apparent pattern to these occurrences. 
Even within the same course at the same institution, one or the other variable (or even both) 
might show up as significant or non-significant from one year or one class to the next. The small 
size of the samples surely exacerbated this phenomenon and may well have obscured a real effect 
that would only be evident upon analysis of larger samples. In order to extract at least some 
information on this issue from our data, we turn to examination of our largest samples. 

 
III E: Analysis of largest samples: which pretest is most closely associated with final grade? 

In order to explore in greater depth the relative degree of association with course grades of the 
various pretests, we illustrate here five separate methods to determine which (if any) of the 
pretest scores is most closely associated with final course grade in the combined sample Alg-2 
ASU-P 2022-23-24  (N = 216). This is the largest sample that incorporates both the Math 
diagnostic and the Lawson test.  

1) Correlation with grades: The Pearson correlation coefficient between final course grade 
and score on the Lawson pretest was +0.28 while that for the Math pretest score was 
+0.35; the difference between those values is not statistically significant.  

2) Quartile odds ratio: As illustrated in Fig. 2, the probability of obtaining a top-quartile 
grade for a high scorer on the Lawson pretest was 4.1 times as large as that of a low scorer 
on that pretest. By comparison, the probability of a top grade for a high scorer on the Math 
pretest was only 2.8 times as large as that of a low scorer. However, the probabilities of 
obtaining bottom-quartile grades showed the opposite pattern: low scorers on the Math 
pretest were 4.8 times as likely to get a bottom-quartile grade as high scorers on that 
pretest, while the comparable ratio for the Lawson pretest was only 2.4. 

3) Multiple linear regression: As illustrated in Fig. S1, a multiple regression calculation 
yielded the equation G = 26.363 + 0.185L + 0.295M, where G, L, and M are the percentile 
scores for final course grade, Lawson pretest score, and Math pretest score, respectively; 
both L and M were statistically significant predictors in this model. Since the coefficient 
of M is substantially larger than that of L, the implication might be that the Math pretest 
score was the more “influential” of the two pretests in this case. 
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Fig. S1. Results of multiple linear regression for combined sample Alg-2 ASU-P 2022-23-24; all scores 
are in percentiles. Both Lawson and Math pretest scores are significant predictors of final grade points. 
The online calculator by Stats.Blue was used to generate the model and the graphical display. 

 

4) Matched pair comparison: Four separate groups are analyzed using this method, the 
results of which are provided in Table SI; the four groups are (a) students in the top-
quartile on Lawson pretest; (b) students in the bottom quartile on the Lawson pretest; (c) 
students in the top-quartile on Math pretest; (d) students in the bottom quartile on the 
Math pretest. In each of the four groups the same procedure was carried out, as follows: 
(i) Separate students with identical scores on the specified pretest into two separate groups 
of equal size, that is: those with higher scores on the other pretest, and those with lower 
scores on the other pretest. For example, within the Lawson top-quartile group, students 
scoring 84.3 on the Lawson pretest were divided into two groups of three students each, 
such that all students in one group had higher Math pretest scores than all students in the 
other group. (When an even number of students had an identical Lawson score but all 
different Math scores, this division was straightforward. If it was an odd number, the 
student with the “middle” Math score was removed from the sample. If some students 
with the given Lawson score also had identical Math scores, they were eliminated as 
necessary to form two groups of exactly equal size. If only one student had a particular 
Lawson score, that student was removed from the sample.) (ii) Repeat this process for all 
students in the (top or bottom quartile) group; the result is two separate subgroups of 
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identical size in which each individual student in one subgroup is matched with one in the 
other subgroup who has an identical score on the specified pretest (e.g., Lawson) but a 
different score on the other pretest (e.g., Math). (iii) Compare the average final grades of 
the higher-score subgroup to those of the lower-score subgroup. The results in Table SI 
show that the final grades of the higher-Math subgroups were consistently higher than 
those in the lower-Math subgroups (for students with identical Lawson scores), while 
results for the higher and lower Lawson subgroups (for students with identical Math 
scores) were not significantly different at the p = 0.05 level.  
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Table SI. Matched-pair comparison for combined sample Alg-2 ASU-P 2022-23-24; all scores are in 
percentiles. (a) Students with top-quartile Lawson scores are divided into two groups: higher Math and lower 
Math. Each student in the higher-Math group is matched to a student in the lower-Math group who has an 
identical Lawson score but a different Math score. The average grade percentiles of the two groups are 
compared, and the p-value for a t-test of the difference between the average grades is shown. (b) Bottom-
quartile Lawson students divided into higher- and lower-Math groups, as in (a). (c) Top-quartile Math students 
are divided into higher- and lower-Lawson groups, matched as above. (d) Bottom-quartile Math students 
divided into higher- and lower-Lawson groups, matched as above. 
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5) Stratify top and bottom quartiles according to scores on the “other” pretest: Results of 
this calculation are shown in Fig. S2. The method is analogous to the matched pair 
comparison except that the groups being compared here do not necessarily have identical 
scores on one of the pretests nor are they necessarily of identical size; they only share 
membership in the top-quartile group. As an example, the 49 top-quartile scorers on the 
Lawson pretest were divided into a “higher-Math” subgroup (N = 24) and a “lower-Math” 
subgroup (N =25); every person in the higher-Math subgroup had a higher Math score 
than anyone in the lower-Math subgroup. Students in the higher-Math subgroup were 2.3 
times as likely to get a top-quartile grade as students in the lower-Math subgroup, and less 
likely to receive a bottom-quartile grade. (In fact, none of them received a bottom-quartile 
grade.) Similarly, the higher-Math subgroup among the bottom-quartile scorers on the 
Lawson test also had higher probability of getting a top-quartile grade and lower 
probability of a bottom-quartile grade than those in the lower-Math subgroup. By 
comparison, the results for the higher- and lower-Lawson subgroups (of the top and 
bottom Math quartiles) did not follow this clear pattern.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2. Stratified sample comparison for Alg-2 ASU-P 2022-23-24. Top- and bottom-quartile grade 
probabilities are shown for the top-half (upper 50%) and bottom-half (lower 50%) Math scorers among both 
the top- and bottom-quartile Lawson groups. Also shown are the top- and bottom-quartile grade probabilities   
for the top-half (upper 50%) and bottom-half (lower 50%) Lawson scorers among both the top- and bottom-
quartile Math groups. 
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Even with all these tests, the answer to the original question remains unclear. By some 
indications (multiple linear regression, matched pairs, and stratified samples), students’ Math 
pretest scores appeared to be more closely associated with final grades than their Lawson pretest 
scores, while other indicators showed either no significant difference (correlation coefficients) or 
provided conflicting results (quartile odds ratios).   

A similar set of calculations for the largest single sample, Alg-1 CU 2005, seemed to favor in 
more unambiguous fashion the Lawson pretest scores over FCI scores as the more influential of 
the two variables in that class. For example, the difference between the correlation coefficients 
(Lawson: +0.39; FCI: +0.24) was significant (p=0.01) and the respective coefficients in the 
multiple linear regression differed by factor of three (see Fig. S3). Additional analysis, shown in 
Fig. S4, appears to indicate that high and low Lawson scores consistently corresponded to high 
and low grades even when the sample was first stratified according to FCI score, while the 
reverse pattern (that is, FCI-grade relationship for sample stratified by Lawson score) did not 
hold as consistently. As the other samples were simply too small to yield meaningful results on 
this question, we must leave it to future research to probe it in more depth.  

 

 

Fig. S3. Results of multiple linear regression for Alg-1 2005 CU; all scores are on a 0-100% scale. (Note 
that N is slightly reduced because only students who took both pretests are included in this calculation.) 
Both Lawson and FCI pretest scores are significant predictors of final grade points, but Lawson appears 
to be more influential. The online calculator by Stats.Blue was used to generate the model and the 
graphical display. 
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Fig. S4. Stratified sample comparison for Alg-1 2005 CU. Top- and bottom-quartile grade probabilities are 
shown for the top-half (upper 50%) and bottom-half (lower 50%) FCI scorers among both the top- and 
bottom-quartile Lawson groups. Also shown are the top- and bottom-quartile grade probabilities for the top-
half (upper 50%) and bottom-half (lower 50%) Lawson scorers among both the top- and bottom-quartile FCI 
groups. 
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III F: Interaction effects 

A so-called interaction effect may be present in the context of a dependent variable (grades, in 
the present case) that can be interpreted as responding to the influence of two or more other 
“independent” variables (Lawson and Math pretest scores, for example). An interaction effect 
would imply that the nature or strength of the functional relationship between the responding 
variable and one of the independent variables would vary depending on the magnitude of the 
other independent variable. For example, it might be the case that grades are more strongly 
dependent on (e.g., have higher correlation with) Math pretest scores for students having high 
Lawson scores than they are for students with low Lawson scores. A standard way to test for 
such an effect would be first to assume that the relationship of grade G to Math score M and 
Lawson score L can be modeled as G = a +bM + cL (where a, b, and c are constant coefficients), 
but also that the Math score coefficient b is itself linearly dependent on Lawson pretest score as 
in b = d + eL  where d and e are constants. (This implies that the strength of the grade-Math 
relationship parametrized by b is itself linearly related to Lawson score.) This leads to G = a + (d 
+ eL)M + cL = a + dM + cL + eLM where e is the coefficient of the “interaction” term LM. A 
coefficient e that is sufficiently large indicates the presence of a significant interaction effect. 
However, even in situations where interaction effects may actually be present, standard statistical 
tests may show the interaction as “not significant” if sample sizes are too small. More broadly, 
the typical linear regression methods of testing for interaction effects impose rather severe 
assumptions on the nature of the functional relationships. 

We did in fact use these standard methods to test for interaction effects in all 22 of our 
samples that incorporated two or more pretests, including the combined Alg-2 ASU-P 2022-23-
24 sample. Only in two cases did the interaction effect test as marginally significant (p < 0.05) 
and in no case did it meet a stricter (and here more appropriate) criterion of p < 0.01. However, 
the assumptions made about the nature of the functional relationships in standard multiple linear 
regressions are, after all, rather restrictive, and a deeper analysis of the data suggests the 
possibility of an alternative interpretation. Specifically, the results presented in Table SI and Fig. 
S2 seem to suggest that the positive association between grades and Math scores is stronger for 
students with high Lawson scores than for those with low Lawson scores. In Fig. S2, the 
probability ratio (high Math/low Math) for obtaining high grades is higher and for low grades is 
lower for students with high Lawson scores, compared to those with low Lawson scores. In Table 
SI, the score difference (high Math vs. low Math) is larger for students with high Lawson scores 
than for those with low Lawson scores. Similarly, the same figures appear to show that the 
positive association between grades and Lawson scores may be stronger for students with high 
Math scores than for those with low Math scores (although the difference is not statistically 
significant). Together, these results suggest the possibility of an interaction effect in which the 
positive correlation between grades and scores on one of the pretests is larger for students who 
score higher on the other pretest. One might characterize this relationship by saying that if a 
student scores low on one of the pretests, their score on the other pretest is less predictive of their 
grade than it might be if they had scored high on that pretest. 
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